Spaces:
Running
Running
File size: 11,431 Bytes
d033501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
"""Functions to derive flood extent using Google Earth Engine."""
import time
import ee
def _check_task_completed(task_id, verbose=False):
"""
Return True if a task export completes successfully, else returns false.
Inputs:
task_id (str): Google Earth Engine task id
Returns:
boolean
"""
status = ee.data.getTaskStatus(task_id)[0]
if status["state"] in (
ee.batch.Task.State.CANCELLED,
ee.batch.Task.State.FAILED,
):
if "error_message" in status:
if verbose:
print(status["error_message"])
return True
elif status["state"] == ee.batch.Task.State.COMPLETED:
return True
return False
def wait_for_tasks(task_ids, timeout=3600, verbose=False):
"""
Wait for tasks to complete, fail, or timeout.
Wait for all active tasks if task_ids is not provided.
Note: Tasks will not be canceled after timeout, and
may continue to run.
Inputs:
task_ids (list):
timeout (int):
Returns:
None
"""
start = time.time()
elapsed = 0
while elapsed < timeout or timeout == 0:
elapsed = time.time() - start
finished = [_check_task_completed(task) for task in task_ids]
if all(finished):
if verbose:
print(f"Tasks {task_ids} completed after {elapsed}s")
return True
time.sleep(5)
if verbose:
print(
f"Stopped waiting for {len(task_ids)} tasks \
after {timeout} seconds"
)
return False
def export_flood_data(
flooded_area_vector,
flooded_area_raster,
image_before_flood,
image_after_flood,
region,
filename="flood_extents",
verbose=False,
):
"""
Export the results of derive_flood_extents function to Google Drive.
Inputs:
flooded_area_vector (ee.FeatureCollection): Detected flood extents as
vector geometries.
flooded_area_raster (ee.Image): Detected flood extents as a binary
raster.
image_before_flood (ee.Image): The 'before' Sentinel-1 image.
image_after_flood (ee.Image): The 'after' Sentinel-1 image containing
view of the flood waters.
region (ee.Geometry.Polygon): Geographic extent of analysis area.
filename (str): Desired filename prefix for exported files
Returns:
None
"""
if verbose:
print(
"Exporting detected flood extents to your Google Drive. \
Please wait..."
)
s1_before_task = ee.batch.Export.image.toDrive(
image=image_before_flood,
description="export_before_s1_scene",
scale=30,
region=region,
fileNamePrefix=filename + "_s1_before",
crs="EPSG:4326",
fileFormat="GeoTIFF",
)
s1_after_task = ee.batch.Export.image.toDrive(
image=image_after_flood,
description="export_flooded_s1_scene",
scale=30,
region=region,
fileNamePrefix=filename + "_s1_after",
crs="EPSG:4326",
fileFormat="GeoTIFF",
)
raster_task = ee.batch.Export.image.toDrive(
image=flooded_area_raster,
description="export_flood_extents_raster",
scale=30,
region=region,
fileNamePrefix=filename + "_raster",
crs="EPSG:4326",
fileFormat="GeoTIFF",
)
vector_task = ee.batch.Export.table.toDrive(
collection=flooded_area_vector,
description="export_flood_extents_polygons",
fileFormat="shp",
fileNamePrefix=filename + "_polygons",
)
s1_before_task.start()
s1_after_task.start()
raster_task.start()
vector_task.start()
if verbose:
print("Exporting before Sentinel-1 scene: Task id ", s1_before_task.id)
print("Exporting flooded Sentinel-1 scene: Task id ", s1_after_task.id)
print("Exporting flood extent geotiff: Task id ", raster_task.id)
print("Exporting flood extent shapefile: Task id ", vector_task.id)
wait_for_tasks(
[s1_before_task.id, s1_after_task.id, raster_task.id, vector_task.id]
)
def retrieve_image_collection(
search_region,
start_date,
end_date,
polarization="VH",
pass_direction="Ascending",
):
"""
Retrieve Sentinel-1 immage collection from Google Earth Engine.
Inputs:
search_region (ee.Geometry.Polygon): Geographic extent of image search.
start_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
end_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
polarization (str): Synthetic aperture radar polarization mode, e.g.,
'VH' or 'VV'. VH is mostly is the preferred polarization for
flood mapping.
pass_direction (str): Synthetic aperture radar pass direction, either
'Ascending' or 'Descending'.
Returns:
collection (ee.ImageCollection): Sentinel-1 images matching the search
criteria.
"""
collection = (
ee.ImageCollection("COPERNICUS/S1_GRD")
.filter(ee.Filter.eq("instrumentMode", "IW"))
.filter(
ee.Filter.listContains(
"transmitterReceiverPolarisation", polarization
)
)
.filter(ee.Filter.eq("orbitProperties_pass", pass_direction.upper()))
.filter(ee.Filter.eq("resolution_meters", 10))
.filterDate(start_date, end_date)
.filterBounds(search_region)
.select(polarization)
)
return collection
def smooth(image, smoothing_radius=50):
"""
Reduce the radar speckle by smoothing.
Inputs:
image (ee.Image): Input image.
smoothing_radius (int): The radius of the kernel to use for focal mean
smoothing.
Returns:
smoothed_image (ee.Image): The resulting image after smoothing is
applied.
"""
smoothed_image = image.focal_mean(
radius=smoothing_radius, kernelType="circle", units="meters"
)
return smoothed_image
def mask_permanent_water(image):
"""
Query the JRC Global Surface Water Mapping Layers, v1.3.
The goal is to determine where perennial water bodies (water > 10
months/yr), and mask these areas.
Inputs:
image (ee.Image): Input image.
Returns:
masked_image (ee.Image): The resulting image after surface water
masking is applied.
"""
surface_water = ee.Image("JRC/GSW1_4/GlobalSurfaceWater").select(
"seasonality"
)
surface_water_mask = surface_water.gte(10).updateMask(
surface_water.gte(10)
)
# Flooded layer where perennial water bodies(water > 10 mo / yr) is
# assigned a 0 value
where_surface_water = image.where(surface_water_mask, 0)
masked_image = image.updateMask(where_surface_water)
return masked_image
def reduce_noise(image):
"""
Reduce noise in the image.
Compute connectivity of pixels to eliminate those connected to 8 or fewer
neighbours.
Inputs:
image (ee.Image): A binary image.
Returns:
reduced_noise_image (ee.Image): The resulting image after noise
reduction is applied.
"""
connections = image.connectedPixelCount()
reduced_noise_image = image.updateMask(connections.gte(8))
return reduced_noise_image
def mask_slopes(image):
"""
Mask out areas with more than 5 % slope with a Digital Elevation Model.
Inputs:
image (ee.Image): Input image.
Returns:
slopes_masked (ee.Image): The resulting image after slope masking is
applied.
"""
dem = ee.Image("WWF/HydroSHEDS/03VFDEM")
terrain = ee.Algorithms.Terrain(dem)
slope = terrain.select("slope")
slopes_masked = image.updateMask(slope.lt(5))
return slopes_masked
def derive_flood_extents(
aoi,
before_start_date,
before_end_date,
after_start_date,
after_end_date,
difference_threshold=1.25,
polarization="VH",
pass_direction="Ascending",
export=False,
export_filename="flood_extents",
):
"""
Set start and end dates of a period BEFORE and AFTER a flood.
These periods need to be long enough for Sentinel-1 to acquire an image.
Inputs:
aoi (ee.Geometry.Polygon): Geographic extent of analysis area.
before_start_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
before_end_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
after_start_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
after_end_date (str): Date in format yyyy-mm-dd, e.g., '2020-10-01'.
difference_threshold (float): Threshold to be applied on the
differenced image (after flood - before flood). It has been chosen
by trial and error. In case your flood extent result shows many
false-positive or negative signals, consider changing it.
export (bool): Flag to export derived flood extents to Google Drive
export_filename (str): Desired filename prefix for exported files. Only
used if export=True.
Returns:
flood_vectors (ee.FeatureCollection): Detected flood extents as vector
geometries.
flood_rasters (ee.Image): Detected flood extents as a binary raster.
before_filtered (ee.Image): The 'before' Sentinel-1 image.
after_filtered (ee.Image): The 'after' Sentinel-1 image containing view
of the flood waters.
"""
before_flood_img_col = retrieve_image_collection(
search_region=aoi,
start_date=before_start_date,
end_date=before_end_date,
polarization=polarization,
pass_direction=pass_direction,
)
after_flood_img_col = retrieve_image_collection(
search_region=aoi,
start_date=after_start_date,
end_date=after_end_date,
polarization=polarization,
pass_direction=pass_direction,
)
# Create a mosaic of selected tiles and clip to study area
before_mosaic = before_flood_img_col.mosaic().clip(aoi)
after_mosaic = after_flood_img_col.mosaic().clip(aoi)
before_filtered = smooth(before_mosaic)
after_filtered = smooth(after_mosaic)
# Calculate the difference between the before and after images
difference = after_filtered.divide(before_filtered)
# Apply the predefined difference - threshold and create the flood extent
# mask
difference_binary = difference.gt(difference_threshold)
difference_binary_masked = mask_permanent_water(difference_binary)
difference_binary_masked_reduced_noise = reduce_noise(
difference_binary_masked
)
flood_rasters = mask_slopes(difference_binary_masked_reduced_noise)
# Export the extent of detected flood in vector format
flood_vectors = flood_rasters.reduceToVectors(
scale=10,
geometryType="polygon",
geometry=aoi,
eightConnected=False,
bestEffort=True,
tileScale=2,
)
if export:
export_flood_data(
flooded_area_vector=flood_vectors,
flooded_area_raster=flood_rasters,
image_before_flood=before_filtered,
image_after_flood=after_filtered,
region=aoi,
filename=export_filename,
)
return flood_vectors, flood_rasters, before_filtered, after_filtered
|