🔧 Fix Gradio compatibility - remove deprecated @gr .cache decorator
Browse files
app.py
CHANGED
@@ -13,20 +13,23 @@ import pandas as pd
|
|
13 |
import plotly.express as px
|
14 |
import plotly.graph_objects as go
|
15 |
|
16 |
-
# Initialize the model
|
17 |
-
|
|
|
18 |
def load_model():
|
19 |
"""Load the emotion classification model"""
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
31 |
# Emotion mappings
|
32 |
EMOTION_EMOJIS = {
|
@@ -51,14 +54,14 @@ def classify_emotion(text):
|
|
51 |
"""Classify emotion for a single text"""
|
52 |
if not text.strip():
|
53 |
return "Please enter some text to analyze.", None, None
|
54 |
-
|
55 |
-
|
56 |
-
if
|
57 |
return "Model failed to load. Please try again.", None, None
|
58 |
|
59 |
try:
|
60 |
# Get prediction
|
61 |
-
result =
|
62 |
emotion = result[0]['label'].lower()
|
63 |
confidence = result[0]['score']
|
64 |
|
@@ -83,10 +86,10 @@ def classify_emotion(text):
|
|
83 |
scores = []
|
84 |
|
85 |
# Get scores for all emotions (if available)
|
86 |
-
|
87 |
-
all_results =
|
88 |
scores = [next((r['score'] for r in all_results if r['label'].lower() == e), 0) for e in emotions]
|
89 |
-
|
90 |
# If only top prediction available, set others to 0
|
91 |
scores = [confidence if e == emotion else 0 for e in emotions]
|
92 |
|
@@ -134,9 +137,9 @@ def classify_batch(text_input):
|
|
134 |
"""Classify emotions for multiple texts"""
|
135 |
if not text_input.strip():
|
136 |
return "Please enter texts to analyze (one per line).", None
|
137 |
-
|
138 |
-
|
139 |
-
if
|
140 |
return "Model failed to load. Please try again.", None
|
141 |
|
142 |
try:
|
@@ -149,7 +152,7 @@ def classify_batch(text_input):
|
|
149 |
# Classify all texts
|
150 |
results = []
|
151 |
for text in texts:
|
152 |
-
result =
|
153 |
emotion = result[0]['label'].lower()
|
154 |
confidence = result[0]['score']
|
155 |
emoji = EMOTION_EMOJIS.get(emotion, '🤔')
|
@@ -198,8 +201,8 @@ def classify_batch(text_input):
|
|
198 |
|
199 |
def run_predefined_tests():
|
200 |
"""Run predefined test cases"""
|
201 |
-
|
202 |
-
if
|
203 |
return "Model failed to load. Please try again.", None
|
204 |
|
205 |
# Predefined test cases
|
@@ -228,7 +231,7 @@ def run_predefined_tests():
|
|
228 |
correct = 0
|
229 |
|
230 |
for text, expected, flag in test_cases:
|
231 |
-
result =
|
232 |
predicted = result[0]['label'].lower()
|
233 |
confidence = result[0]['score']
|
234 |
|
|
|
13 |
import plotly.express as px
|
14 |
import plotly.graph_objects as go
|
15 |
|
16 |
+
# Initialize the model globally
|
17 |
+
classifier = None
|
18 |
+
|
19 |
def load_model():
|
20 |
"""Load the emotion classification model"""
|
21 |
+
global classifier
|
22 |
+
if classifier is None:
|
23 |
+
try:
|
24 |
+
classifier = pipeline(
|
25 |
+
"text-classification",
|
26 |
+
model="rmtariq/multilingual-emotion-classifier",
|
27 |
+
device=0 if torch.cuda.is_available() else -1
|
28 |
+
)
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error loading model: {e}")
|
31 |
+
return None
|
32 |
+
return classifier
|
33 |
|
34 |
# Emotion mappings
|
35 |
EMOTION_EMOJIS = {
|
|
|
54 |
"""Classify emotion for a single text"""
|
55 |
if not text.strip():
|
56 |
return "Please enter some text to analyze.", None, None
|
57 |
+
|
58 |
+
model = load_model()
|
59 |
+
if model is None:
|
60 |
return "Model failed to load. Please try again.", None, None
|
61 |
|
62 |
try:
|
63 |
# Get prediction
|
64 |
+
result = model(text)
|
65 |
emotion = result[0]['label'].lower()
|
66 |
confidence = result[0]['score']
|
67 |
|
|
|
86 |
scores = []
|
87 |
|
88 |
# Get scores for all emotions (if available)
|
89 |
+
try:
|
90 |
+
all_results = model(text, return_all_scores=True)
|
91 |
scores = [next((r['score'] for r in all_results if r['label'].lower() == e), 0) for e in emotions]
|
92 |
+
except:
|
93 |
# If only top prediction available, set others to 0
|
94 |
scores = [confidence if e == emotion else 0 for e in emotions]
|
95 |
|
|
|
137 |
"""Classify emotions for multiple texts"""
|
138 |
if not text_input.strip():
|
139 |
return "Please enter texts to analyze (one per line).", None
|
140 |
+
|
141 |
+
model = load_model()
|
142 |
+
if model is None:
|
143 |
return "Model failed to load. Please try again.", None
|
144 |
|
145 |
try:
|
|
|
152 |
# Classify all texts
|
153 |
results = []
|
154 |
for text in texts:
|
155 |
+
result = model(text)
|
156 |
emotion = result[0]['label'].lower()
|
157 |
confidence = result[0]['score']
|
158 |
emoji = EMOTION_EMOJIS.get(emotion, '🤔')
|
|
|
201 |
|
202 |
def run_predefined_tests():
|
203 |
"""Run predefined test cases"""
|
204 |
+
model = load_model()
|
205 |
+
if model is None:
|
206 |
return "Model failed to load. Please try again.", None
|
207 |
|
208 |
# Predefined test cases
|
|
|
231 |
correct = 0
|
232 |
|
233 |
for text, expected, flag in test_cases:
|
234 |
+
result = model(text)
|
235 |
predicted = result[0]['label'].lower()
|
236 |
confidence = result[0]['score']
|
237 |
|