import os import time from pathlib import Path import torch from torchvision.io import read_image import torchvision.transforms.v2 as transforms from torchvision.utils import make_grid import gradio as gr from diffusers import AutoencoderKL, EulerDiscreteScheduler from transformers import SiglipImageProcessor, SiglipVisionModel from huggingface_hub import hf_hub_download import spaces from esrgan_model import UpscalerESRGAN from model import create_model device = "cuda" # Custom transform to pad images to square class PadToSquare: def __call__(self, img): _, h, w = img.shape max_side = max(h, w) pad_h = (max_side - h) // 2 pad_w = (max_side - w) // 2 padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h) return transforms.functional.pad(img, padding, padding_mode="edge") # Timer decorator def timer_func(func): def wrapper(*args, **kwargs): t0 = time.time() result = func(*args, **kwargs) print(f"{func.__name__} took {time.time() - t0:.2f} seconds") return result return wrapper @timer_func def load_model(model_class_name, model_filename, repo_id: str = "rizavelioglu/tryoffdiff"): path_model = hf_hub_download(repo_id=repo_id, filename=model_filename, force_download=False) state_dict = torch.load(path_model, weights_only=True, map_location=device) state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()} model = create_model(model_class_name).to(device) # model = torch.compile(model) model.load_state_dict(state_dict, strict=True) return model.eval() @spaces.GPU(duration=10) @torch.no_grad() @timer_func def generate_multi_image(input_image, garment_types, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False): label_map = {"Upper-Body": 0, "Lower-Body": 1, "Dress": 2} valid_single = ["Upper-Body", "Lower-Body", "Dress"] valid_tuple = ["Upper-Body", "Lower-Body"] if not garment_types: raise gr.Error("Please select at least one garment type.") if len(garment_types) == 1 and garment_types[0] in valid_single: selected, label_indices = garment_types, [label_map[garment_types[0]]] elif sorted(garment_types) == sorted(valid_tuple): selected, label_indices = valid_tuple, [label_map[t] for t in valid_tuple] else: raise gr.Error("Invalid selection. Choose one garment type or Upper-Body and Lower-Body together.") batch_size = len(selected) scheduler.set_timesteps(num_inference_steps) generator = torch.Generator(device=device).manual_seed(seed) x = torch.randn(batch_size, 4, 64, 64, generator=generator, device=device) # Process inputs cond_image = img_enc_transform(read_image(input_image)) inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()} cond_emb = img_enc(**inputs).last_hidden_state.to(device) cond_emb = cond_emb.expand(batch_size, *cond_emb.shape[1:]) uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None label = torch.tensor(label_indices, device=device, dtype=torch.int64) model = models["multi"] with torch.autocast(device): for t in scheduler.timesteps: t = t.to(device) # Ensure t is on the correct device if guidance_scale > 1: noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb]), torch.cat([label, label])).chunk(2) noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) # Classifier-free guidance else: noise_pred = model(x, t, cond_emb, label) # Standard prediction # Scheduler step scheduler_output = scheduler.step(noise_pred, t, x) x = scheduler_output.prev_sample # Decode predictions from latent space decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample images = (decoded / 2 + 0.5).cpu() grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True) output_image = transforms.ToPILImage()(grid) return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image @spaces.GPU(duration=10) @torch.no_grad() @timer_func def generate_upper_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False): model = models["upper"] scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to(device) generator = torch.Generator(device=device).manual_seed(seed) x = torch.randn(1, 4, 64, 64, generator=generator, device=device) # Process input image cond_image = img_enc_transform(read_image(input_image)) inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()} cond_emb = img_enc(**inputs).last_hidden_state.to(device) uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None with torch.autocast(device): for t in scheduler.timesteps: t = t.to(device) # Ensure t is on the correct device if guidance_scale > 1: # Classifier-free guidance noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2) noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) else: # Standard prediction noise_pred = model(x, t, cond_emb) # Scheduler step scheduler_output = scheduler.step(noise_pred, t, x) x = scheduler_output.prev_sample # Decode predictions from latent space decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample images = (decoded / 2 + 0.5).cpu() grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True) output_image = transforms.ToPILImage()(grid) return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image @spaces.GPU(duration=10) @torch.no_grad() @timer_func def generate_lower_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False): model = models["lower"] scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to(device) generator = torch.Generator(device=device).manual_seed(seed) x = torch.randn(1, 4, 64, 64, generator=generator, device=device) # Process input image cond_image = img_enc_transform(read_image(input_image)) inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()} cond_emb = img_enc(**inputs).last_hidden_state.to(device) uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None with torch.autocast(device): for t in scheduler.timesteps: t = t.to(device) # Ensure t is on the correct device if guidance_scale > 1: # Classifier-free guidance noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2) noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) else: # Standard prediction noise_pred = model(x, t, cond_emb) # Scheduler step scheduler_output = scheduler.step(noise_pred, t, x) x = scheduler_output.prev_sample # Decode predictions from latent space decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample images = (decoded / 2 + 0.5).cpu() grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True) output_image = transforms.ToPILImage()(grid) return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image @spaces.GPU(duration=10) @torch.no_grad() @timer_func def generate_dress_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False): model = models["dress"] scheduler.set_timesteps(num_inference_steps) scheduler.timesteps = scheduler.timesteps.to(device) generator = torch.Generator(device=device).manual_seed(seed) x = torch.randn(1, 4, 64, 64, generator=generator, device=device) # Process input image cond_image = img_enc_transform(read_image(input_image)) inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()} cond_emb = img_enc(**inputs).last_hidden_state.to(device) uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None with torch.autocast(device): for t in scheduler.timesteps: t = t.to(device) # Ensure t is on the correct device if guidance_scale > 1: # Classifier-free guidance noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2) noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) else: # Standard prediction noise_pred = model(x, t, cond_emb) # Scheduler step scheduler_output = scheduler.step(noise_pred, t, x) x = scheduler_output.prev_sample # Decode predictions from latent space decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample images = (decoded / 2 + 0.5).cpu() grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True) output_image = transforms.ToPILImage()(grid) return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image def create_multi_tab(): description = r"""
In total, 4 models are available for generating garments (one in each tab):
- Multi-Garment: Generate multiple garments (e.g., upper-body and lower-body) sequentially.
- Upper-Body: Generate upper-body garments (e.g., tops, jackets, etc.).
- Lower-Body: Generate lower-body garments (e.g., pants, skirts, etc.).
- Dress: Generate dresses.
How to use:
1. Upload a reference image,
2. Adjust the parameters as needed,
3. Click "Generate" to create the garment(s).
💡 Individual models perform slightly better than the multi-garment model, but the latter is more versatile.
""" examples = [ ["examples/048851_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048851_0.jpg", ["Upper-Body"], 42, 2.0, 20, False], ["examples/048588_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048588_0.jpg", ["Upper-Body"], 42, 2.0, 20, False], ["examples/048643_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048643_0.jpg", ["Lower-Body"], 42, 2.0, 20, False], ["examples/048737_0.jpg", ["Dress"], 42, 2.0, 20, False], ["examples/048737_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048690_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048690_0.jpg", ["Lower-Body"], 42, 2.0, 20, False], ["examples/048691_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048691_0.jpg", ["Upper-Body"], 42, 2.0, 20, False], ["examples/048732_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048754_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048799_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048811_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048821_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False], ["examples/048821_0.jpg", ["Upper-Body"], 42, 2.0, 20, False], ] with gr.Blocks() as tab: gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(): input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384) with gr.Column(min_width=250): garment_type = gr.CheckboxGroup(["Upper-Body", "Lower-Body", "Dress"], label="Select Garment Type", value=["Upper-Body", "Lower-Body"]) seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed") guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.") inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps") upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.") submit_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384) gr.Examples(examples=examples, inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_multi_image, cache_examples=False, examples_per_page=2) gr.Markdown(article) submit_btn.click( fn=generate_multi_image, inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale], outputs=output_image ) return tab def create_upper_tab(): examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")] examples += [ ["examples/00084_00.jpg", 42, 2.0, 20, False], ["examples/00254_00.jpg", 42, 2.0, 20, False], ["examples/00397_00.jpg", 42, 2.0, 20, False], ["examples/01320_00.jpg", 42, 2.0, 20, False], ["examples/02390_00.jpg", 42, 2.0, 20, False], ["examples/14227_00.jpg", 42, 2.0, 20, False], ] with gr.Blocks() as tab: gr.Markdown(title) with gr.Row(): with gr.Column(): input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384) with gr.Column(min_width=250): seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed") guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.") inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps") upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.") submit_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384) gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_upper_image, cache_examples=False, examples_per_page=2) gr.Markdown(article) submit_btn.click( fn=generate_upper_image, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image ) return tab def create_lower_tab(): examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")] with gr.Blocks() as tab: gr.Markdown(title) with gr.Row(): with gr.Column(): input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384) with gr.Column(min_width=250): seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed") guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.") inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps") upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.") submit_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384) gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_lower_image, cache_examples=False, examples_per_page=2) gr.Markdown(article) submit_btn.click( fn=generate_lower_image, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image ) return tab def create_dress_tab(): examples = [ ["examples/053480_0.jpg", 42, 2.0, 20, False], ["examples/048737_0.jpg", 42, 2.0, 20, False], ["examples/048811_0.jpg", 42, 2.0, 20, False], ["examples/053733_0.jpg", 42, 2.0, 20, False], ["examples/052606_0.jpg", 42, 2.0, 20, False], ["examples/053682_0.jpg", 42, 2.0, 20, False], ["examples/052036_0.jpg", 42, 2.0, 20, False], ["examples/052644_0.jpg", 42, 2.0, 20, False], ] with gr.Blocks() as tab: gr.Markdown(title) with gr.Row(): with gr.Column(): input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384) with gr.Column(min_width=250): seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed") guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.") inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps") upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.") submit_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384) gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_dress_image, cache_examples=False, examples_per_page=2) gr.Markdown(article) submit_btn.click( fn=generate_dress_image, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image ) return tab # UI elements title = f"""

Virtual Try-Off Generator

""" article = r""" **Citation**
If you use this work, please give a star ⭐ and a citation: ``` @article{velioglu2024tryoffdiff, title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models}, author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara}, journal = {arXiv}, year = {2024}, note = {\url{https://doi.org/nt3n}} } @article{velioglu2025enhancing, title = {Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off}, author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara}, journal = {arXiv}, year = {2025}, note = {\url{https://doi.org/pn67}} } ``` """ # Custom CSS for proper styling custom_css = """ .center-header { display: flex; align-items: center; justify-content: center; margin: 0 0 20px 0; } .center-header h1 { margin: 0; text-align: center; } .description-table { width: 100%; border-collapse: collapse; } .description-table td { padding: 10px; vertical-align: top; } """ if __name__ == "__main__": # Image Encoder and transforms img_enc_transform = transforms.Compose( [ PadToSquare(), # Custom transform to pad the image to a square transforms.Resize((512, 512)), transforms.ToDtype(torch.float32, scale=True), transforms.Normalize(mean=[0.5], std=[0.5]), ] ) ckpt = "google/siglip-base-patch16-512" img_processor = SiglipImageProcessor.from_pretrained(ckpt, do_resize=False, do_rescale=False, do_normalize=False) img_enc = SiglipVisionModel.from_pretrained(ckpt).eval().to(device) # Initialize VAE (only Decoder will be used) & Noise Scheduler vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").eval().to(device) scheduler = EulerDiscreteScheduler.from_pretrained( hf_hub_download(repo_id="rizavelioglu/tryoffdiff", filename="scheduler/scheduler_config_v2.json", force_download=False) ) scheduler.is_scale_input_called = True # suppress warning # Upscaler model upscaler = UpscalerESRGAN( model_path=Path(hf_hub_download(repo_id="philz1337x/upscaler", filename="4x-UltraSharp.pth")), device=torch.device(device), dtype=torch.float32, ) # Model configurations and loading models = {} model_paths = { "upper": {"class_name": "TryOffDiffv2Single", "path": "tryoffdiffv2_upper.pth"}, # internal code: model_20250213_134430 "lower": {"class_name": "TryOffDiffv2Single", "path": "tryoffdiffv2_lower.pth"}, # internal code: model_20250213_134130 "dress": {"class_name": "TryOffDiffv2Single", "path": "tryoffdiffv2_dress.pth"}, # internal code: model_20250213_133554 "multi": {"class_name": "TryOffDiffv2", "path": "tryoffdiffv2_multi.pth"}, # internal code: model_20250310_155608 } for name, cfg in model_paths.items(): models[name] = load_model(cfg["class_name"], cfg["path"]) torch.cuda.empty_cache() # Create tabbed interface demo = gr.TabbedInterface( [create_multi_tab(), create_upper_tab(), create_lower_tab(), create_dress_tab()], ["Multi-Garment", "Upper-Body", "Lower-Body", "Dress"], css=custom_css, ) demo.launch(ssr_mode=False)