Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,63 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
from peft import PeftModel
|
4 |
-
import gradio as gr
|
5 |
import os
|
6 |
import zipfile
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
if os.path.exists("dorna-diabetes-finetuned-20250514T183411Z-1-001.zip") and not os.path.exists("dorna-diabetes-finetuned.zip"):
|
9 |
os.rename("dorna-diabetes-finetuned-20250514T183411Z-1-001.zip", "dorna-diabetes-finetuned.zip")
|
10 |
print("✅ اسم فایل تغییر کرد.")
|
11 |
|
|
|
12 |
if not os.path.exists("dorna-diabetes-finetuned"):
|
13 |
with zipfile.ZipFile("dorna-diabetes-finetuned.zip", "r") as zip_ref:
|
14 |
zip_ref.extractall(".")
|
15 |
-
print("✅ فایل
|
16 |
|
|
|
17 |
BASE_MODEL = "PartAI/Dorna-Llama3-8B-Instruct"
|
18 |
-
LORA_PATH = "./dorna-diabetes-finetuned"
|
19 |
-
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
21 |
|
|
|
|
|
22 |
base_model = AutoModelForCausalLM.from_pretrained(
|
23 |
BASE_MODEL,
|
24 |
-
|
25 |
torch_dtype=torch.float16,
|
|
|
|
|
|
|
26 |
)
|
27 |
|
|
|
28 |
model = PeftModel.from_pretrained(base_model, LORA_PATH)
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
with torch.no_grad():
|
33 |
output = model.generate(
|
34 |
input_ids=input_ids,
|
35 |
max_new_tokens=200,
|
36 |
-
do_sample=True,
|
37 |
temperature=0.7,
|
38 |
top_p=0.9,
|
|
|
39 |
)
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import zipfile
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
6 |
+
from peft import PeftModel
|
7 |
+
from huggingface_hub import login
|
8 |
|
9 |
+
# --- گام ۱: احراز هویت Hugging Face
|
10 |
+
hf_token = os.environ.get("HF_TOKEN")
|
11 |
+
if not hf_token:
|
12 |
+
raise ValueError("❌ HF_TOKEN not found in environment secrets.")
|
13 |
+
login(hf_token)
|
14 |
+
|
15 |
+
# اگر فایل اشتباه وجود داره و فایل جدید نه
|
16 |
if os.path.exists("dorna-diabetes-finetuned-20250514T183411Z-1-001.zip") and not os.path.exists("dorna-diabetes-finetuned.zip"):
|
17 |
os.rename("dorna-diabetes-finetuned-20250514T183411Z-1-001.zip", "dorna-diabetes-finetuned.zip")
|
18 |
print("✅ اسم فایل تغییر کرد.")
|
19 |
|
20 |
+
# --- گام ۲: اکسترکت فایل فشرده (فقط بار اول)
|
21 |
if not os.path.exists("dorna-diabetes-finetuned"):
|
22 |
with zipfile.ZipFile("dorna-diabetes-finetuned.zip", "r") as zip_ref:
|
23 |
zip_ref.extractall(".")
|
24 |
+
print("✅ فایل LoRA اکسترکت شد.")
|
25 |
|
26 |
+
# --- گام ۳: بارگذاری مدل پایه و LoRA
|
27 |
BASE_MODEL = "PartAI/Dorna-Llama3-8B-Instruct"
|
28 |
+
LORA_PATH = "./dorna-diabetes-finetuned"
|
|
|
|
|
29 |
|
30 |
+
print("🔹 در حال بارگذاری مدل پایه...")
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_auth_token=hf_token)
|
32 |
base_model = AutoModelForCausalLM.from_pretrained(
|
33 |
BASE_MODEL,
|
34 |
+
load_in_4bit=True,
|
35 |
torch_dtype=torch.float16,
|
36 |
+
device_map="auto",
|
37 |
+
trust_remote_code=True,
|
38 |
+
use_auth_token=hf_token
|
39 |
)
|
40 |
|
41 |
+
print("🔹 در حال بارگذاری LoRA...")
|
42 |
model = PeftModel.from_pretrained(base_model, LORA_PATH)
|
43 |
+
model.eval()
|
44 |
+
|
45 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
46 |
|
47 |
+
# --- گام ۴: رابط چت با Gradio
|
48 |
+
def chat(prompt):
|
49 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
|
50 |
with torch.no_grad():
|
51 |
output = model.generate(
|
52 |
input_ids=input_ids,
|
53 |
max_new_tokens=200,
|
|
|
54 |
temperature=0.7,
|
55 |
top_p=0.9,
|
56 |
+
do_sample=True
|
57 |
)
|
58 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
59 |
+
return response[len(prompt):].strip()
|
60 |
+
|
61 |
+
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="💬 Dorna LoRA Model")
|
62 |
|
63 |
+
iface.launch()
|