rinrikatoki's picture
changed a section in app.py and added the requirements.txt
e66ee38 verified
raw
history blame
1.28 kB
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import gradio as gr
import os
import zipfile
if not os.path.exists("dorna-diabetes-finetuned"):
with zipfile.ZipFile("dorna-diabetes-finetuned.zip", "r") as zip_ref:
zip_ref.extractall(".")
print("✅ فایل ZIP اکسترکت شد.")
BASE_MODEL = "PartAI/Dorna-Llama3-8B-Instruct"
LORA_PATH = "./dorna-diabetes-finetuned" # این پوشه رو آپلود می‌کنی توی اسپیس
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(base_model, LORA_PATH)
def generate_response(prompt):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
with torch.no_grad():
output = model.generate(
input_ids=input_ids,
max_new_tokens=200,
do_sample=True,
temperature=0.7,
top_p=0.9,
)
return tokenizer.decode(output[0], skip_special_tokens=True)
gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Dorna-Llama3 LoRA").launch()