riiswa commited on
Commit
29a2972
·
1 Parent(s): 8695a0b

Add some settings for user concurrency limits

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -40,7 +40,7 @@ To follow the progress of KAN in RL you can check the repo [kanrl](https://githu
40
  *Please be patient, as the process may take a few minutes to run, especially in environments with large state/action spaces or with a complex KAN architecture. Some Mujoco environments are available if you run this app locally. For optimal performance, default parameters may not suffice. Feel free to experiment with different settings to achieve desired results.*
41
  """
42
 
43
- envs = ["CartPole-v1", "MountainCar-v0", "Acrobot-v1", "Pendulum-v1", "MountainCarContinuous-v0", "LunarLander-v2", "BipedalWalker-v3"]#"Swimmer-v3", "Hopper-v3", "HalfCheetah-v3", "Walker2d-v3"]
44
 
45
 
46
  if __name__ == "__main__":
@@ -140,9 +140,9 @@ if __name__ == "__main__":
140
  kan_architecture = gr.Image(interactive=False, label="KAN architecture")
141
  sym_video = gr.Video(label="Symbolic policy video", interactive=False, autoplay=True)
142
  sym_formula = gr.Markdown(elem_id="formula")
143
- choice.input(load_video_and_dataset, inputs=[choice], outputs=[expert_video, button, state])
144
  button.click(extract_interpretable_policy, inputs=[kan_widths, epochs, state], outputs=[kan_architecture, state]).then(
145
  symbolic_policy, inputs=[state], outputs=[sym_video, sym_formula]
146
  )
147
-
148
  app.launch()
 
40
  *Please be patient, as the process may take a few minutes to run, especially in environments with large state/action spaces or with a complex KAN architecture. Some Mujoco environments are available if you run this app locally. For optimal performance, default parameters may not suffice. Feel free to experiment with different settings to achieve desired results.*
41
  """
42
 
43
+ envs = ["CartPole-v1", "MountainCar-v0", "Acrobot-v1", "Pendulum-v1", "MountainCarContinuous-v0", "LunarLander-v2", "BipedalWalker-v3"] #"Swimmer-v3", "Hopper-v3", "HalfCheetah-v3", "Walker2d-v3"]
44
 
45
 
46
  if __name__ == "__main__":
 
140
  kan_architecture = gr.Image(interactive=False, label="KAN architecture")
141
  sym_video = gr.Video(label="Symbolic policy video", interactive=False, autoplay=True)
142
  sym_formula = gr.Markdown(elem_id="formula")
143
+ choice.input(load_video_and_dataset, inputs=[choice], outputs=[expert_video, button, state], concurrency_limit=8)
144
  button.click(extract_interpretable_policy, inputs=[kan_widths, epochs, state], outputs=[kan_architecture, state]).then(
145
  symbolic_policy, inputs=[state], outputs=[sym_video, sym_formula]
146
  )
147
+ app.queue(default_concurrency_limit=3, max_size=10)
148
  app.launch()