Spaces:
Sleeping
Sleeping
File size: 20,591 Bytes
231d431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import os
import time
import logging
from typing import List, Union, Tuple
from cachetools import LRUCache
import hashlib
import asyncio
from functools import lru_cache
from contextlib import asynccontextmanager
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Configure logging
logging.basicConfig(
level=(
logging.DEBUG if os.environ.get("ENVIRONMENT") != "production" else logging.INFO
),
format="%(asctime)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
from fastapi import FastAPI, HTTPException, Request, Depends
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.exceptions import RequestValidationError
from pydantic import BaseModel, Field, field_validator, ConfigDict # Import ConfigDict
from pydantic_settings import BaseSettings
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
import uvicorn
from starlette import status
from models_config import MODELS, get_model_config, CANONICAL_MODELS, MODEL_ALIASES
# --- Configuration Management ---
class AppSettings(BaseSettings):
"""
Application settings loaded from environment variables.
"""
cuda_cache_clear_enabled: bool = Field(
True, json_schema_extra={"env": "CUDA_CACHE_CLEAR_ENABLED"}, description="Enable CUDA cache clearing after each batch."
)
default_model: str = Field(
"text-embedding-3-large", json_schema_extra={"env": "DEFAULT_MODEL"}, description="Default embedding model to use."
)
warmup_enabled: bool = Field(
True, json_schema_extra={"env": "WARMUP_ENABLED"}, description="Enable model warmup on startup."
)
app_port: int = Field(
8000, json_schema_extra={"env": "APP_PORT"}, description="Port for the FastAPI application."
)
app_host: str = Field(
"0.0.0.0", json_schema_extra={"env": "APP_HOST"}, description="Host for the FastAPI application."
)
embedding_batch_size: int = Field(
8, json_schema_extra={"env": "EMBEDDING_BATCH_SIZE"}, description="Batch size for embedding generation."
)
embeddings_cache_enabled: bool = Field(
True, json_schema_extra={"env": "EMBEDDINGS_CACHE_ENABLED"}, description="Enable in-memory embeddings cache."
)
report_cached_tokens: bool = Field(
False, json_schema_extra={"env": "REPORT_CACHED_TOKENS"}, description="Report token count for cached embeddings."
)
embeddings_cache_maxsize: int = Field(
2048, json_schema_extra={"env": "EMBEDDINGS_CACHE_MAXSIZE"}, description="Maximum size of the embeddings cache."
)
environment: str = Field(
"development", json_schema_extra={"env": "ENVIRONMENT"}, description="Application environment (e.g., 'production', 'development')."
)
model_config = ConfigDict(env_file=".env") # Use ConfigDict instead of class Config
@lru_cache() # Cache the settings instance for performance
def get_app_settings():
return AppSettings()
# Set up device configuration
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {DEVICE}")
# Initialize global embeddings cache (size determined by settings)
embeddings_cache = LRUCache(maxsize=0) # Will be updated on startup based on settings
# --- Lifespan Event Handler ---
@asynccontextmanager
async def lifespan(app: FastAPI):
"""
Handles application startup and shutdown events.
Initializes the embeddings cache and warms up the default model.
"""
settings = get_app_settings() # Directly get settings here
global embeddings_cache
embeddings_cache = LRUCache(maxsize=settings.embeddings_cache_maxsize)
logger.info(f"Embeddings cache initialized with max size: {settings.embeddings_cache_maxsize}")
default_model = settings.default_model
if default_model not in MODELS:
logger.error(f"Default model '{default_model}' is not configured in MODELS.")
raise ValueError(
f"Default model '{default_model}' is not configured in MODELS."
)
if settings.warmup_enabled:
logger.info(f"Warming up default model: {default_model}...")
try:
# Pass settings to get_embeddings_batch
await get_embeddings_batch(["warmup"], default_model, settings)
logger.info("Model warmup complete.")
except Exception as e:
logger.error(f"Model warmup failed for {default_model}: {e}", exc_info=True)
yield # Application starts here
# Clean up code (if any) goes here when application shuts down
logger.info("Application shutdown.")
app = FastAPI(
title="Embedding API",
description="API for generating embeddings using a transformer model.",
version="0.1.0",
lifespan=lifespan # Assign the lifespan context manager
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# Mount the static directory to serve index.html and other static files.
app.mount("/static", StaticFiles(directory="static"), name="static")
# Initialize model cache
# to avoid reloading models on every request
model_cache = {}
tokenizer_cache = {}
# New: Initialize global dictionary for model loading locks
model_load_locks = {}
async def load_model(model_name: str):
"""
Load model and tokenizer if not already loaded, with asynchronous locking.
Args:
model_name (str): The name of the model to load.
Returns:
tuple: A tuple containing the loaded model and tokenizer.
"""
config = get_model_config(model_name)
canonical_hf_model_name = config["name"]
async with model_load_locks.setdefault(canonical_hf_model_name, asyncio.Lock()):
if canonical_hf_model_name not in model_cache:
logger.info(f"Loading model: {canonical_hf_model_name}")
model_path = config["name"]
trust_remote = config.get("requires_remote_code", False)
model_cache[canonical_hf_model_name] = AutoModel.from_pretrained(
model_path, trust_remote_code=trust_remote
).to(DEVICE)
model_cache[canonical_hf_model_name].eval()
tokenizer_cache[canonical_hf_model_name] = AutoTokenizer.from_pretrained(model_path)
logger.info(f"Model loaded: {canonical_hf_model_name}")
return model_cache[canonical_hf_model_name], tokenizer_cache[canonical_hf_model_name]
class EmbeddingRequest(BaseModel):
"""
Represents a request for generating embeddings.
Attributes:
input (Union[str, List[str]]): The input text to embed, can be a single string or a list of strings.
model (str): The name of the model to use for embedding.
encoding_format (str): The format of the embeddings. Currently only 'float' is supported.
"""
input: Union[str, List[str]] = Field(
...,
description="The input text to embed, can be a single string or a list of strings.",
json_schema_extra={"example": "This is an example sentence."},
)
model: str = Field(
"text-embedding-3-large",
description="The name of the model to use for embedding. Supports both original model names and OpenAI-compatible names.",
json_schema_extra={"example": "text-embedding-3-large"},
)
encoding_format: str = Field(
"float",
description="The format of the embeddings. Currently only 'float' is supported.",
json_schema_extra={"example": "float"},
)
@field_validator('model')
@classmethod
def validate_model(cls, value: str) -> str:
if value not in MODELS:
valid_models = list(CANONICAL_MODELS.keys()) + list(MODEL_ALIASES.keys())
raise ValueError(f"Model must be one of: {', '.join(sorted(valid_models))}")
return value
@field_validator('encoding_format')
@classmethod
def validate_encoding_format(cls, value: str) -> str:
if value != "float":
raise ValueError("Only 'float' encoding format is supported")
return value
class EmbeddingObject(BaseModel):
"""
Represents an embedding object.
Attributes:
object (str): The type of object, which is "embedding".
embedding (List[float]): The embedding vector.
index (int): The index of the embedding.
"""
object: str = "embedding"
embedding: List[float]
index: int
class EmbeddingResponse(BaseModel):
"""
Represents the response containing a list of embedding objects.
"""
data: List[EmbeddingObject]
model: str
object: str = "list"
usage: dict
class ModelObject(BaseModel):
"""
Represents a single model object in the list of models.
"""
id: str
object: str = "model"
created: int
owned_by: str
class ListModelsResponse(BaseModel):
"""
Represents the response containing a list of available models.
"""
data: List[ModelObject]
object: str = "list"
# --- Helper functions for get_embeddings_batch refactoring ---
def _process_texts_for_cache_and_batching(
texts: List[str],
model_config: dict,
settings: AppSettings
) -> Tuple[List[torch.Tensor], int, List[str], List[int]]:
"""
Checks cache for each text and prepares texts for model processing.
Returns cached embeddings, total cached tokens, texts to process, and their original indices.
"""
final_ordered_embeddings = [None] * len(texts)
total_prompt_tokens = 0
texts_to_process_in_model = []
original_indices_for_model_output = []
canonical_hf_model_name = model_config["name"]
for i, text in enumerate(texts):
text_hash = hashlib.sha256(text.encode('utf-8')).hexdigest()
cache_key = (text_hash, canonical_hf_model_name)
if settings.embeddings_cache_enabled and cache_key in embeddings_cache:
cached_embedding, cached_tokens = embeddings_cache[cache_key]
final_ordered_embeddings[i] = cached_embedding.unsqueeze(0)
if settings.report_cached_tokens:
total_prompt_tokens += cached_tokens
logger.debug(f"Cache hit for text at index {i}")
else:
texts_to_process_in_model.append(text)
original_indices_for_model_output.append(i)
logger.debug(f"Cache miss for text at index {i}")
return final_ordered_embeddings, total_prompt_tokens, texts_to_process_in_model, original_indices_for_model_output
def _apply_instruction_prefix(texts: List[str], model_config: dict) -> List[str]:
"""
Applies instruction prefixes to texts if required by the model configuration.
"""
if model_config.get("instruction_prefix_required", False):
processed_texts = []
default_prefix = model_config.get("default_instruction_prefix", "")
known_prefixes = model_config.get("known_instruction_prefixes", [])
for text in texts:
if not any(text.startswith(prefix) for prefix in known_prefixes):
processed_texts.append(f"{default_prefix}{text}")
else:
processed_texts.append(text)
return processed_texts
return texts
def _perform_model_inference(
texts_to_tokenize: List[str],
model,
tokenizer,
model_max_tokens: int,
model_dimension: int,
settings: AppSettings
) -> Tuple[torch.Tensor, List[int], int]:
"""
Performs model inference for a batch of texts and returns embeddings,
individual token counts, and total prompt tokens for the batch.
Handles CUDA Out of Memory errors.
"""
try:
batch_dict = tokenizer(
texts_to_tokenize,
max_length=model_max_tokens,
padding=True,
truncation=True,
return_tensors="pt",
)
individual_tokens_in_batch = [
int(torch.sum(mask).item()) for mask in batch_dict["attention_mask"]
]
prompt_tokens_current_batch = int(torch.sum(batch_dict["attention_mask"]).item())
batch_dict = {k: v.to(DEVICE) for k, v in batch_dict.items()}
with torch.no_grad():
outputs = model(**batch_dict)
embeddings = outputs.last_hidden_state[:, 0]
embeddings = embeddings[:, :model_dimension]
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings, individual_tokens_in_batch, prompt_tokens_current_batch
except torch.cuda.OutOfMemoryError as e:
logger.error(
f"CUDA Out of Memory Error during embedding generation: {e}. "
"Consider reducing EMBEDDING_BATCH_SIZE or using a smaller model.",
exc_info=True
)
raise HTTPException(
status_code=status.HTTP_507_INSUFFICIENT_STORAGE,
detail=f"GPU out of memory: {e}. Please try with a smaller batch size or a different model."
)
except Exception as e:
logger.error(
f"An unexpected error occurred during batch embedding generation: {e}", exc_info=True
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Internal server error during embedding generation: {str(e)}"
)
finally:
if settings.cuda_cache_clear_enabled and torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("CUDA cache cleared after processing chunk.")
def _store_embeddings_in_cache(
embeddings: torch.Tensor,
individual_tokens_in_batch: List[int],
batch_original_indices: List[int],
texts: List[str],
model_config: dict,
final_ordered_embeddings: List[Union[torch.Tensor, None]],
settings: AppSettings
):
"""
Stores newly generated embeddings in the cache and updates the final ordered embeddings list.
"""
canonical_hf_model_name = model_config["name"]
for j, original_idx in enumerate(batch_original_indices):
current_text = texts[original_idx]
current_embedding = embeddings[j].cpu()
current_tokens = individual_tokens_in_batch[j]
current_text_hash = hashlib.sha256(current_text.encode('utf-8')).hexdigest()
if settings.embeddings_cache_enabled:
embeddings_cache[(current_text_hash, canonical_hf_model_name)] = (current_embedding, current_tokens)
final_ordered_embeddings[original_idx] = current_embedding.unsqueeze(0)
async def get_embeddings_batch(
texts: List[str],
model_name: str,
settings: AppSettings = Depends(get_app_settings)
) -> Tuple[torch.Tensor, int]:
"""
Generates embeddings for a batch of texts using the specified model.
Handles potential CUDA out of memory errors by processing texts in chunks.
Includes an in-memory cache for individual text-model pairs.
Args:
texts (List[str]): The list of input texts to embed.
model_name (str): The name of the model to use.
settings (AppSettings): Application settings injected via FastAPI's Depends.
"""
config = get_model_config(model_name)
model, tokenizer = await load_model(model_name)
model_max_tokens = config.get("max_tokens", 8192)
model_dimension = config["dimension"]
max_batch_size = settings.embedding_batch_size
final_ordered_embeddings, total_prompt_tokens, texts_to_process_in_model, original_indices_for_model_output = \
_process_texts_for_cache_and_batching(texts, config, settings)
if texts_to_process_in_model:
for i in range(0, len(texts_to_process_in_model), max_batch_size):
batch_texts = texts_to_process_in_model[i : i + max_batch_size]
batch_original_indices = original_indices_for_model_output[i : i + max_batch_size]
texts_to_tokenize = _apply_instruction_prefix(batch_texts, config)
embeddings, individual_tokens_in_batch, prompt_tokens_current_batch = \
_perform_model_inference(texts_to_tokenize, model, tokenizer, model_max_tokens, model_dimension, settings)
total_prompt_tokens += prompt_tokens_current_batch
_store_embeddings_in_cache(
embeddings,
individual_tokens_in_batch,
batch_original_indices,
texts,
config,
final_ordered_embeddings,
settings
)
final_embeddings_tensor = torch.cat([e for e in final_ordered_embeddings if e is not None], dim=0)
return final_embeddings_tensor, total_prompt_tokens
@app.get("/", response_class=FileResponse)
async def read_root():
"""
Serve the static index.html file at the root route.
"""
return FileResponse("static/index.html")
@app.get("/v1/models", response_model=ListModelsResponse)
async def list_models():
"""
Lists the available embedding models.
Returns:
ListModelsResponse: The response containing a list of model objects.
"""
model_list = []
current_time = int(time.time())
for model_name in MODELS.keys():
model_list.append(
ModelObject(
id=model_name,
created=current_time,
owned_by="local",
)
)
return ListModelsResponse(data=model_list)
@app.get("/v1/models/{model_id}", response_model=ModelObject)
async def get_model(model_id: str):
"""
Retrieves information about a specific embedding model.
Args:
model_id (str): The ID of the model to retrieve.
"""
if model_id in MODELS:
current_time = int(time.time())
return ModelObject(
id=model_id,
created=current_time,
owned_by="local",
)
else:
raise HTTPException(status_code=404, detail="Model not found")
@app.post(
"/api/embed", response_model=EmbeddingResponse
)
@app.post(
"/v1/embeddings", response_model=EmbeddingResponse
)
async def create_embeddings(request: EmbeddingRequest, settings: AppSettings = Depends(get_app_settings)):
"""
Generates embeddings for the given input text(s) using batch processing.
Compatible with OpenAI's Embeddings API format.
The input can be a single string or a list of strings.
Returns a list of embedding objects, each containing the embedding vector.
"""
try:
start_time = time.time()
if isinstance(request.input, str):
texts = [request.input]
else:
texts = request.input
if not texts:
return EmbeddingResponse(
data=[],
model=request.model,
object="list",
usage={"prompt_tokens": 0, "total_tokens": 0},
)
embeddings_tensor, total_tokens = await get_embeddings_batch(texts, request.model, settings)
data = [
EmbeddingObject(embedding=embeddings_tensor[i].tolist(), index=i)
for i in range(len(texts))
]
usage = {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
}
end_time = time.time()
processing_time = end_time - start_time
if settings.environment != "production":
logger.debug(
f"Processed {len(texts)} inputs in {processing_time:.4f} seconds. "
f"Model: {request.model}. Tokens: {total_tokens}."
)
return EmbeddingResponse(
data=data, model=request.model, object="list", usage=usage
)
except ValueError as e:
logger.error(f"Validation error in /v1/embeddings: {e}", exc_info=True)
raise HTTPException(status_code=422, detail=str(e))
except HTTPException as e:
logger.error(f"HTTPException in /v1/embeddings: {e.detail}", exc_info=True)
raise e
except Exception as e:
logger.error(f"Unhandled error in /v1/embeddings: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
logger.error(f"Validation error for request to {request.url}: {exc.errors()}")
raise HTTPException(status_code=422, detail=str(exc.errors()))
if __name__ == "__main__":
uvicorn.run(app, host=get_app_settings().app_host, port=get_app_settings().app_port)
|