File size: 3,927 Bytes
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
a399d55
c2f384d
a399d55
e2ccc8a
 
 
38dbec8
e2ccc8a
38dbec8
e2ccc8a
38dbec8
e2ccc8a
 
 
 
 
38dbec8
e2ccc8a
 
 
 
 
38dbec8
e2ccc8a
38dbec8
e2ccc8a
 
 
 
38dbec8
e2ccc8a
38dbec8
e2ccc8a
38dbec8
e2ccc8a
 
 
 
 
 
 
38dbec8
e2ccc8a
 
 
38dbec8
1a20c54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
1a20c54
38dbec8
1a20c54
38dbec8
1a20c54
38dbec8
 
 
 
1a20c54
38dbec8
 
1a20c54
 
38dbec8
1a20c54
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
64fccd8
1a20c54
 
 
64fccd8
 
38dbec8
1a20c54
 
38dbec8
 
1a20c54
64fccd8
1a20c54
38dbec8
 
 
1a20c54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import random
import tempfile
import time
import zipfile
from contextlib import nullcontext
from functools import lru_cache
from typing import Any

import cv2
import gradio as gr
import numpy as np
import torch
import trimesh
from gradio_litmodel3d import LitModel3D
from gradio_pointcloudeditor import PointCloudEditor
from PIL import Image
from transparent_background import Remover

os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
os.system("pip install ./deps/pynim-0.0.3-cp310-cp310-linux_x86_64.whl")

import spar3d.utils as spar3d_utils
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D

os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")

bg_remover = Remover()  # default setting

COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]

# Cached. Doesn't change
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
    COND_FOVY, COND_HEIGHT, COND_WIDTH
)

generated_files = []

# Delete previous gradio temp dir folder
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
    print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
    import shutil

    shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])

device = spar3d_utils.get_device()

model = SPAR3D.from_pretrained(
    "stabilityai/stable-point-aware-3d",
    config_name="config.yaml",
    weight_name="model.safetensors",
)
model.eval()
model = model.to(device)

example_files = [
    os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]

def auto_process(input_image):
    if input_image is None:
        return None, None, None, None
    
    # Default values
    guidance_scale = 3.0
    random_seed = 0
    foreground_ratio = 1.3
    remesh_option = "None"
    vertex_count_type = "Keep Vertex Count"
    vertex_count = 2000
    texture_resolution = 1024
    no_crop = False
    pc_cond = None

    # First step: Remove background
    rem_removed = remove_background(input_image)
    fr_res = spar3d_utils.foreground_crop(
        rem_removed,
        crop_ratio=foreground_ratio,
        newsize=(COND_WIDTH, COND_HEIGHT),
        no_crop=no_crop,
    )

    # Second step: Run model
    glb_file, pc_file, illumination_file, pc_list = process_model_run(
        fr_res,
        guidance_scale,
        random_seed,
        pc_cond,
        remesh_option,
        vertex_count_type,
        vertex_count,
        texture_resolution,
    )

    zip_file = create_zip_file(glb_file, pc_file, illumination_file)

    return glb_file, illumination_file, zip_file, pc_list

# Simplified interface
with gr.Blocks() as demo:
    gr.Markdown(
        """
    # SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
    Upload an image to generate a 3D model.
    """
    )
    
    with gr.Row():
        with gr.Column():
            input_img = gr.Image(
                type="pil",
                label="Upload Image",
                sources=["upload", "click"],
                image_mode="RGBA"
            )

        with gr.Column():
            output_3d = LitModel3D(
                label="3D Model",
                clear_color=[0.0, 0.0, 0.0, 0.0],
                tonemapping="aces",
                contrast=1.0,
                scale=1.0,
            )
            download_all_btn = gr.File(
                label="Download Model (ZIP)",
                file_count="single",
                visible=True
            )

    input_img.change(
        auto_process,
        inputs=[input_img],
        outputs=[
            output_3d,
            gr.State(),  # for illumination file
            download_all_btn,
            gr.State(),  # for point cloud list
        ],
    )

demo.queue().launch(share=False)