File size: 3,927 Bytes
38dbec8 64fccd8 38dbec8 64fccd8 38dbec8 a399d55 c2f384d a399d55 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 64fccd8 1a20c54 64fccd8 38dbec8 1a20c54 38dbec8 1a20c54 64fccd8 1a20c54 38dbec8 1a20c54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import random
import tempfile
import time
import zipfile
from contextlib import nullcontext
from functools import lru_cache
from typing import Any
import cv2
import gradio as gr
import numpy as np
import torch
import trimesh
from gradio_litmodel3d import LitModel3D
from gradio_pointcloudeditor import PointCloudEditor
from PIL import Image
from transparent_background import Remover
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
os.system("pip install ./deps/pynim-0.0.3-cp310-cp310-linux_x86_64.whl")
import spar3d.utils as spar3d_utils
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
bg_remover = Remover() # default setting
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
generated_files = []
# Delete previous gradio temp dir folder
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
import shutil
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
device = spar3d_utils.get_device()
model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
model.eval()
model = model.to(device)
example_files = [
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]
def auto_process(input_image):
if input_image is None:
return None, None, None, None
# Default values
guidance_scale = 3.0
random_seed = 0
foreground_ratio = 1.3
remesh_option = "None"
vertex_count_type = "Keep Vertex Count"
vertex_count = 2000
texture_resolution = 1024
no_crop = False
pc_cond = None
# First step: Remove background
rem_removed = remove_background(input_image)
fr_res = spar3d_utils.foreground_crop(
rem_removed,
crop_ratio=foreground_ratio,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=no_crop,
)
# Second step: Run model
glb_file, pc_file, illumination_file, pc_list = process_model_run(
fr_res,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
)
zip_file = create_zip_file(glb_file, pc_file, illumination_file)
return glb_file, illumination_file, zip_file, pc_list
# Simplified interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
Upload an image to generate a 3D model.
"""
)
with gr.Row():
with gr.Column():
input_img = gr.Image(
type="pil",
label="Upload Image",
sources=["upload", "click"],
image_mode="RGBA"
)
with gr.Column():
output_3d = LitModel3D(
label="3D Model",
clear_color=[0.0, 0.0, 0.0, 0.0],
tonemapping="aces",
contrast=1.0,
scale=1.0,
)
download_all_btn = gr.File(
label="Download Model (ZIP)",
file_count="single",
visible=True
)
input_img.change(
auto_process,
inputs=[input_img],
outputs=[
output_3d,
gr.State(), # for illumination file
download_all_btn,
gr.State(), # for point cloud list
],
)
demo.queue().launch(share=False) |