|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from spar3d.models.transformers.attention import BasicTransformerBlock
|
|
from spar3d.models.utils import BaseModule
|
|
|
|
|
|
class Transformer1D(BaseModule):
|
|
"""
|
|
A 1D Transformer model for sequence data.
|
|
|
|
Parameters:
|
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
|
in_channels (`int`, *optional*):
|
|
The number of channels in the input and output (specify if the input is **continuous**).
|
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
|
attention_bias (`bool`, *optional*):
|
|
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
|
"""
|
|
|
|
@dataclass
|
|
class Config(BaseModule.Config):
|
|
num_attention_heads: int = 16
|
|
attention_head_dim: int = 88
|
|
in_channels: Optional[int] = None
|
|
out_channels: Optional[int] = None
|
|
num_layers: int = 1
|
|
norm_num_groups: int = 32
|
|
attention_bias: bool = False
|
|
activation_fn: str = "geglu"
|
|
norm_elementwise_affine: bool = True
|
|
residual: bool = True
|
|
input_layer_norm: bool = True
|
|
norm_eps: float = 1e-5
|
|
|
|
cfg: Config
|
|
|
|
def configure(self) -> None:
|
|
self.num_attention_heads = self.cfg.num_attention_heads
|
|
self.attention_head_dim = self.cfg.attention_head_dim
|
|
inner_dim = self.num_attention_heads * self.attention_head_dim
|
|
|
|
linear_cls = nn.Linear
|
|
|
|
|
|
self.in_channels = self.cfg.in_channels
|
|
|
|
self.norm = torch.nn.GroupNorm(
|
|
num_groups=self.cfg.norm_num_groups,
|
|
num_channels=self.cfg.in_channels,
|
|
eps=self.cfg.norm_eps,
|
|
affine=True,
|
|
)
|
|
self.proj_in = linear_cls(self.cfg.in_channels, inner_dim)
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
inner_dim,
|
|
self.num_attention_heads,
|
|
self.attention_head_dim,
|
|
activation_fn=self.cfg.activation_fn,
|
|
attention_bias=self.cfg.attention_bias,
|
|
norm_elementwise_affine=self.cfg.norm_elementwise_affine,
|
|
norm_eps=self.cfg.norm_eps,
|
|
)
|
|
for d in range(self.cfg.num_layers)
|
|
]
|
|
)
|
|
|
|
|
|
self.out_channels = (
|
|
self.cfg.in_channels
|
|
if self.cfg.out_channels is None
|
|
else self.cfg.out_channels
|
|
)
|
|
|
|
self.proj_out = linear_cls(inner_dim, self.cfg.in_channels)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
):
|
|
"""
|
|
The [`Transformer1DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
|
Input `hidden_states`.
|
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
|
self-attention.
|
|
attention_mask ( `torch.Tensor`, *optional*):
|
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
|
negative values to the attention scores corresponding to "discard" tokens.
|
|
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
|
above. This bias will be added to the cross-attention scores.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2:
|
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
|
attention_mask = attention_mask.unsqueeze(1)
|
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
|
encoder_attention_mask = (
|
|
1 - encoder_attention_mask.to(hidden_states.dtype)
|
|
) * -10000.0
|
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
|
|
|
|
|
batch, _, seq_len = hidden_states.shape
|
|
residual = hidden_states
|
|
|
|
if self.cfg.input_layer_norm:
|
|
hidden_states = self.norm(hidden_states)
|
|
inner_dim = hidden_states.shape[1]
|
|
hidden_states = hidden_states.permute(0, 2, 1).reshape(
|
|
batch, seq_len, inner_dim
|
|
)
|
|
hidden_states = self.proj_in(hidden_states)
|
|
|
|
|
|
for block in self.transformer_blocks:
|
|
hidden_states = block(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
)
|
|
|
|
|
|
hidden_states = self.proj_out(hidden_states)
|
|
hidden_states = (
|
|
hidden_states.reshape(batch, seq_len, inner_dim)
|
|
.permute(0, 2, 1)
|
|
.contiguous()
|
|
)
|
|
|
|
if self.cfg.residual:
|
|
output = hidden_states + residual
|
|
else:
|
|
output = hidden_states
|
|
|
|
return output
|
|
|