Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel
|
5 |
|
@@ -10,45 +10,44 @@ base_model = AutoModelForCausalLM.from_pretrained(
|
|
10 |
load_in_4bit=True
|
11 |
)
|
12 |
|
13 |
-
#tokenizer
|
14 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
15 |
|
16 |
-
#LoRA adaptors
|
17 |
model = PeftModel.from_pretrained(base_model, "rezaenayati/RezAi-Model")
|
18 |
|
19 |
def chat_with_rezAi(messages, history):
|
20 |
conversation = "<|start_header_id|>system<|end_header_id|>\nYou are Reza Enayati, a Computer Science student and entrepreneur from Los Angeles, who is eager to work as a software engineer or machine learning engineer. Answer these questions as if you are in an interview.<|eot_id|>"
|
21 |
-
|
22 |
-
|
23 |
conversation += f"<|start_header_id|>user<|end_header_id|>\n{user_msg}<|eot_id|>"
|
24 |
conversation += f"<|start_header_id|>assistant<|end_header_id|>\n{assistant_msg}<|eot_id|>"
|
25 |
-
|
26 |
-
conversation += f"<|start_header_id|>user<|end_header_id|>\n{
|
27 |
-
|
28 |
inputs = tokenizer([conversation], return_tensors="pt")
|
29 |
-
|
30 |
with torch.no_grad():
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
#get response
|
40 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
new_response = response.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
42 |
-
|
43 |
return new_response
|
44 |
|
45 |
demo = gr.ChatInterface(
|
46 |
fn=chat_with_rezAi,
|
47 |
title="💬 Chat with RezAI",
|
48 |
-
description="Hi! I'm RezAI. Ask me about
|
49 |
examples=[
|
50 |
"Tell me about your background",
|
51 |
-
"What programming languages do you know?",
|
52 |
"Walk me through your Pizza Guys project",
|
53 |
"What's your experience with machine learning?",
|
54 |
"How did you get into computer science?"
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel
|
5 |
|
|
|
10 |
load_in_4bit=True
|
11 |
)
|
12 |
|
13 |
+
# tokenizer
|
14 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit")
|
15 |
|
16 |
+
# LoRA adaptors
|
17 |
model = PeftModel.from_pretrained(base_model, "rezaenayati/RezAi-Model")
|
18 |
|
19 |
def chat_with_rezAi(messages, history):
|
20 |
conversation = "<|start_header_id|>system<|end_header_id|>\nYou are Reza Enayati, a Computer Science student and entrepreneur from Los Angeles, who is eager to work as a software engineer or machine learning engineer. Answer these questions as if you are in an interview.<|eot_id|>"
|
21 |
+
|
22 |
+
for user_msg, assistant_msg in history:
|
23 |
conversation += f"<|start_header_id|>user<|end_header_id|>\n{user_msg}<|eot_id|>"
|
24 |
conversation += f"<|start_header_id|>assistant<|end_header_id|>\n{assistant_msg}<|eot_id|>"
|
25 |
+
|
26 |
+
conversation += f"<|start_header_id|>user<|end_header_id|>\n{messages}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
|
27 |
+
|
28 |
inputs = tokenizer([conversation], return_tensors="pt")
|
29 |
+
|
30 |
with torch.no_grad():
|
31 |
+
outputs = model.generate(
|
32 |
+
**inputs,
|
33 |
+
max_new_tokens=128,
|
34 |
+
temperature=0.5,
|
35 |
+
do_sample=True,
|
36 |
+
pad_token_id=tokenizer.eos_token_id
|
37 |
+
)
|
38 |
+
|
39 |
+
# get response
|
40 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
new_response = response.split("<|start_header_id|>assistant<|end_header_id|>")[-1].strip()
|
|
|
42 |
return new_response
|
43 |
|
44 |
demo = gr.ChatInterface(
|
45 |
fn=chat_with_rezAi,
|
46 |
title="💬 Chat with RezAI",
|
47 |
+
description="Hi! I'm RezAI. Ask me about Reza's technical background, projects, or experience!",
|
48 |
examples=[
|
49 |
"Tell me about your background",
|
50 |
+
"What programming languages do you know?",
|
51 |
"Walk me through your Pizza Guys project",
|
52 |
"What's your experience with machine learning?",
|
53 |
"How did you get into computer science?"
|