Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
#Load the model
|
7 |
+
model = tf.keras.models.load_model("cnn_model.h5")
|
8 |
+
|
9 |
+
def predict(image_array):
|
10 |
+
if image_array is None or np.sum(image_array) == 0:
|
11 |
+
return "Please draw a digit."
|
12 |
+
|
13 |
+
image = Image.fromarray(image_array.astype("uint8"), mode="L")
|
14 |
+
image = ImageOps.invert(image).resize((28, 28))
|
15 |
+
|
16 |
+
image_array = np.array(image).astype("float32") / 255.0
|
17 |
+
image_array = image_array.reshape(1, 28, 28, 1)
|
18 |
+
|
19 |
+
logits = model.predict(image_array)
|
20 |
+
prediction = np.argmax(logits)
|
21 |
+
confidence = tf.nn.softmax(logits)[0][prediction].numpy()
|
22 |
+
|
23 |
+
return f"Digit: {prediction} (confidence: {confidence:.2%})"
|
24 |
+
|
25 |
+
gr.Interface(
|
26 |
+
fn=predict,
|
27 |
+
inputs=gr.Sketchpad(image_mode="L", canvas_size=(200, 200)),
|
28 |
+
outputs="text",
|
29 |
+
title="Digit Classifier",
|
30 |
+
).launch()
|