Update app.py
Browse files
app.py
CHANGED
@@ -8,23 +8,30 @@ model = tf.keras.models.load_model("cnn_model.h5")
|
|
8 |
|
9 |
def predict(image_array):
|
10 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
if image_array is None or np.sum(image_array) == 0:
|
12 |
return "Please draw a digit."
|
13 |
-
|
14 |
image = Image.fromarray(image_array.astype("uint8"), mode="L")
|
15 |
image = ImageOps.invert(image).resize((28, 28))
|
16 |
-
|
17 |
image_array = np.array(image).astype("float32") / 255.0
|
18 |
image_array = image_array.reshape(1, 28, 28, 1)
|
19 |
-
|
20 |
logits = model.predict(image_array)
|
21 |
prediction = int(np.argmax(logits))
|
22 |
confidence = float(tf.nn.softmax(logits)[0][prediction])
|
23 |
-
|
24 |
return f"Digit: {prediction} (confidence: {confidence:.2%})"
|
25 |
-
|
26 |
except Exception as err:
|
27 |
-
return f"Runtime error: {str(err)}"
|
28 |
|
29 |
gr.Interface(
|
30 |
fn=predict,
|
|
|
8 |
|
9 |
def predict(image_array):
|
10 |
try:
|
11 |
+
# Debug the input type
|
12 |
+
print(f"Type of input: {type(image_array)}")
|
13 |
+
|
14 |
+
# Handle if input is a dictionary (which appears to be happening)
|
15 |
+
if isinstance(image_array, dict):
|
16 |
+
# If it's a dict, try to get the image data
|
17 |
+
if "image" in image_array:
|
18 |
+
image_array = image_array["image"]
|
19 |
+
else:
|
20 |
+
return "Error: Received dictionary input but couldn't find image data"
|
21 |
+
|
22 |
if image_array is None or np.sum(image_array) == 0:
|
23 |
return "Please draw a digit."
|
24 |
+
|
25 |
image = Image.fromarray(image_array.astype("uint8"), mode="L")
|
26 |
image = ImageOps.invert(image).resize((28, 28))
|
|
|
27 |
image_array = np.array(image).astype("float32") / 255.0
|
28 |
image_array = image_array.reshape(1, 28, 28, 1)
|
|
|
29 |
logits = model.predict(image_array)
|
30 |
prediction = int(np.argmax(logits))
|
31 |
confidence = float(tf.nn.softmax(logits)[0][prediction])
|
|
|
32 |
return f"Digit: {prediction} (confidence: {confidence:.2%})"
|
|
|
33 |
except Exception as err:
|
34 |
+
return f"Runtime error: {str(err)}\nInput type: {type(image_array)}"
|
35 |
|
36 |
gr.Interface(
|
37 |
fn=predict,
|