Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,6 +38,19 @@ def summarize():
|
|
38 |
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
|
39 |
|
40 |
rouge = evaluate.load("rouge")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
return data_collator
|
43 |
# return type(tokenized_billsum)
|
|
|
38 |
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
|
39 |
|
40 |
rouge = evaluate.load("rouge")
|
41 |
+
|
42 |
+
def compute_metrics(eval_pred):
|
43 |
+
predictions, labels = eval_pred
|
44 |
+
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
|
45 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
46 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
47 |
+
|
48 |
+
result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
49 |
+
|
50 |
+
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
|
51 |
+
result["gen_len"] = np.mean(prediction_lens)
|
52 |
+
|
53 |
+
return {k: round(v, 4) for k, v in result.items()}
|
54 |
|
55 |
return data_collator
|
56 |
# return type(tokenized_billsum)
|