Spaces:
Paused
Paused
dharmendra
commited on
Commit
·
89183a0
1
Parent(s):
51e51e6
Implement streaming responses for LLM API
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from starlette.responses import StreamingResponse # <-- NEW IMPORT
|
|
11 |
import asyncio
|
12 |
from langchain_community.llms import HuggingFacePipeline
|
13 |
import json
|
|
|
14 |
|
15 |
app = FastAPI()
|
16 |
# Get the Hugging Face API token from environment variables (BEST PRACTICE)
|
@@ -47,13 +48,27 @@ llm = HuggingFacePipeline(pipeline=pipeline(
|
|
47 |
tokenizer=tokenizer,
|
48 |
max_new_tokens=512, # Adjust as needed for desired response length
|
49 |
return_full_text=False, # Crucial for getting only the AI's response, esp when ans is small
|
50 |
-
temperature=0.
|
51 |
do_sample=True # Enable sampling for more varied outputs
|
52 |
))
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Initialize Langchain ConversationChain
|
55 |
# verbose=True for debugging LangChain's pro
|
56 |
-
conversation = ConversationChain(llm=llm, memory=memory,verbose=True)
|
57 |
|
58 |
class QuestionRequest(BaseModel):
|
59 |
question: str
|
@@ -102,32 +117,4 @@ async def generate_text(request: QuestionRequest):
|
|
102 |
|
103 |
|
104 |
|
105 |
-
|
106 |
-
# try:
|
107 |
-
# # Retrieve history
|
108 |
-
# history = memory.load_memory_variables({})['history']
|
109 |
-
# # Create prompt with history and current question
|
110 |
-
# prompt = f"History:\n{history}\nQuestion: {request.question}\nAnswer:"
|
111 |
-
|
112 |
-
# inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
|
113 |
-
|
114 |
-
# with torch.no_grad():
|
115 |
-
# outputs = model.generate(
|
116 |
-
# inputs=inputs['input_ids'], # Pass the 'input_ids' tensor
|
117 |
-
# attention_mask=inputs['attention_mask'],
|
118 |
-
# max_length=300,
|
119 |
-
# num_beams=5,
|
120 |
-
# no_repeat_ngram_size=2,
|
121 |
-
# temperature=0.7,
|
122 |
-
# top_k=50,
|
123 |
-
# top_p=0.95,
|
124 |
-
# do_sample=True,
|
125 |
-
# eos_token_id=tokenizer.convert_tokens_to_ids("<|endoftext|>"),
|
126 |
-
# pad_token_id=tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
127 |
-
# )
|
128 |
-
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
129 |
-
# return {"response": response}
|
130 |
-
# except Exception as e:
|
131 |
-
# print("Error during generation:")
|
132 |
-
# traceback.print_exc()
|
133 |
-
# raise HTTPException(status_code=500, detail=str(e))
|
|
|
11 |
import asyncio
|
12 |
from langchain_community.llms import HuggingFacePipeline
|
13 |
import json
|
14 |
+
from langchain.prompts import PromptTemplate
|
15 |
|
16 |
app = FastAPI()
|
17 |
# Get the Hugging Face API token from environment variables (BEST PRACTICE)
|
|
|
48 |
tokenizer=tokenizer,
|
49 |
max_new_tokens=512, # Adjust as needed for desired response length
|
50 |
return_full_text=False, # Crucial for getting only the AI's response, esp when ans is small
|
51 |
+
temperature=0.5, # Controls randomness (0.0 for deterministic, 1.0 for very creative)
|
52 |
do_sample=True # Enable sampling for more varied outputs
|
53 |
))
|
54 |
|
55 |
+
template = """The following is a concise and direct conversation between a human and an AI.
|
56 |
+
The AI should provide a direct answer to the human's question and strictly avoid asking any follow-up questions.
|
57 |
+
The AI should not generate any additional conversational turns (e.g., "Human: ...").
|
58 |
+
If the AI is asked for its name, it should respond with "I am Siddhi."
|
59 |
+
If the AI does not know the answer to a question, it should truthfully state that it does not know.
|
60 |
+
|
61 |
+
Current conversation:
|
62 |
+
{history}
|
63 |
+
Human: {input}
|
64 |
+
AI:"""
|
65 |
+
|
66 |
+
PROMPT = PromptTemplate(input_variables=["history", "input"], template=template)
|
67 |
+
|
68 |
+
|
69 |
# Initialize Langchain ConversationChain
|
70 |
# verbose=True for debugging LangChain's pro
|
71 |
+
conversation = ConversationChain(llm=llm, memory=memory, prompt = PROMPT, verbose=True)
|
72 |
|
73 |
class QuestionRequest(BaseModel):
|
74 |
question: str
|
|
|
117 |
|
118 |
|
119 |
|
120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|