File size: 9,991 Bytes
32e3e0c
 
 
 
6ce3660
32e3e0c
21f6c38
 
32e3e0c
 
 
 
 
50582af
 
32e3e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6caace1
 
 
 
 
32e3e0c
 
 
6caace1
 
41c5912
 
 
 
 
2329d30
aeb407d
41c5912
6caace1
 
 
 
 
2a5ff21
32e3e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6caace1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32e3e0c
 
e9ce4fc
4b52f16
40e5c03
 
4b52f16
2329d30
41c5912
 
 
 
 
 
 
 
43c60ae
6caace1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32e3e0c
 
 
 
e71f49a
32e3e0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from openai import OpenAI
import json
import os
import requests
from PyPDF2 import PdfReader
import gradio as gr
from pydantic import BaseModel


def push(text):
    requests.post(
        "https://api.pushover.net/1/messages.json",
        data={
            "token": os.getenv("PUSHOVER_TOKEN"),
            "user": os.getenv("PUSHOVER_USER"),
            "message": text,
        }
    )


def record_user_details(email, name="Name not provided", notes="not provided"):
    push(f"Recording {name} with email {email} and notes {notes}")
    return {"recorded": "ok"}

def record_unknown_question(question):
    push(f"Recording {question}")
    return {"recorded": "ok"}

record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type": "object",
        "properties": {
            "email": {
                "type": "string",
                "description": "The email address of this user"
            },
            "name": {
                "type": "string",
                "description": "The user's name, if they provided it"
            }
            ,
            "notes": {
                "type": "string",
                "description": "Any additional information about the conversation that's worth recording to give context"
            }
        },
        "required": ["email"],
        "additionalProperties": False
    }
}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
    "parameters": {
        "type": "object",
        "properties": {
            "question": {
                "type": "string",
                "description": "The question that couldn't be answered"
            },
        },
        "required": ["question"],
        "additionalProperties": False
    }
}

tools = [{"type": "function", "function": record_user_details_json},
        {"type": "function", "function": record_unknown_question_json}]

# Create a Pydantic model for the Evaluation
class Evaluation(BaseModel):
    is_acceptable: bool
    feedback: str
    
class Me:

    def __init__(self):
        # when saving secret in HF space, don't use "" :-)
        # Initialize Open Router client using OpenAI format
        # open_router_api_key = os.getenv('OPEN_ROUTER_API_KEY')        
        # if open_router_api_key:
        #     print(f"Checking Keys: Open router API Key exists and begins {open_router_api_key[:8]}")
        # else:
        #     print("Checking Keys: Open router API Key not set - please head to the troubleshooting guide in the setup folder")
        self.openrouter = OpenAI(
                            base_url="https://openrouter.ai/api/v1",
                            api_key= os.getenv('OPEN_ROUTER_API_KEY') )  # open_router_api_key
        # Initialize Gemini client using OpenAI format
        self.gemini = OpenAI(
            api_key=os.getenv("GOOGLE_API_KEY"), 
            base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
        )
        self.name = "Chaoran Zhou"
        reader = PdfReader("me/linkedin.pdf")
        self.linkedin = ""
        for page in reader.pages:
            text = page.extract_text()
            if text:
                self.linkedin += text
        with open("me/summary.txt", "r", encoding="utf-8") as f:
            self.summary = f.read()


    def handle_tool_call(self, tool_calls):
        results = []
        for tool_call in tool_calls:
            tool_name = tool_call.function.name
            arguments = json.loads(tool_call.function.arguments)
            print(f"Tool called: {tool_name}", flush=True)
            tool = globals().get(tool_name)
            result = tool(**arguments) if tool else {}
            results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
        return results
    
    def system_prompt(self):
        system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
particularly questions related to {self.name}'s career, background, skills and experience. \
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "

        system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
        system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
        return system_prompt

    def evaluator_system_prompt(self):
        evaluator_system_prompt = f"You are an evaluator that decides whether a response to a question is acceptable. \
You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \
The Agent is playing the role of {self.name} and is representing {self.name} on their website. \
The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \
The Agent has been provided with context on {self.name} in the form of their summary and LinkedIn details. Here's the information:"

        evaluator_system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
        evaluator_system_prompt += f"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback."
        return evaluator_system_prompt

    def evaluator_user_prompt(self, reply, message, history):
        user_prompt = f"Here's the conversation between the User and the Agent: \n\n{history}\n\n"
        user_prompt += f"Here's the latest message from the User: \n\n{message}\n\n"
        user_prompt += f"Here's the latest response from the Agent: \n\n{reply}\n\n"
        user_prompt += f"Please evaluate the response, replying with whether it is acceptable and your feedback."
        return user_prompt

    def evaluate(self, reply, message, history) -> Evaluation:
        messages = [
            {"role": "system", "content": self.evaluator_system_prompt()},
            {"role": "user", "content": self.evaluator_user_prompt(reply, message, history)}
        ]
        response = self.gemini.beta.chat.completions.parse(
            model="gemini-2.5-flash-preview-05-20", 
            messages=messages, 
            response_format=Evaluation
        )
        return response.choices[0].message.parsed

    def rerun(self, reply, message, history, feedback):
        updated_system_prompt = self.system_prompt() + f"\n\n## Previous answer rejected\nYou just tried to reply, but the quality control rejected your reply\n"
        updated_system_prompt += f"## Your attempted answer:\n{reply}\n\n"
        updated_system_prompt += f"## Reason for rejection:\n{feedback}\n\n"
        messages = [{"role": "system", "content": updated_system_prompt}] + history + [{"role": "user", "content": message}]
        
        done = False
        while not done:
            response = self.gemini.chat.completions.create(
                model="gemini-2.5-flash-preview-05-20",
                messages=messages, 
                tools=tools
            )
            
            if response.choices[0].finish_reason == "tool_calls":
                message_obj = response.choices[0].message
                tool_calls = message_obj.tool_calls
                results = self.handle_tool_call(tool_calls)
                messages.append(message_obj)
                messages.extend(results)
            else:
                done = True
        return response.choices[0].message.content
    
    def chat(self, message, history):
        messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
        done = False
        
        # Generate initial response with tool handling
        while not done:
            response = self.openrouter.chat.completions.create(model="meta-llama/llama-3.3-8b-instruct:free", messages=messages, tools=tools)
            if response.choices[0].finish_reason=="tool_calls":
                message = response.choices[0].message
                tool_calls = message.tool_calls
                results = self.handle_tool_call(tool_calls)
                messages.append(message)
                messages.extend(results)
            else:
                done = True
                     
        reply = response.choices[0].message.content

        # Evaluate the response
        try:
            evaluation = self.evaluate(reply, message, history)
            
            if evaluation.is_acceptable:
                print("Passed evaluation - returning reply")
            else:
                print("Failed evaluation - retrying")
                print(f"Feedback: {evaluation.feedback}")
                reply = self.rerun(reply, message, history, evaluation.feedback)
        except Exception as e:
            print(f"Evaluation failed with error: {e}")
            print("Proceeding with original reply")
            
        return reply
        
    

if __name__ == "__main__":
    me = Me()
    gr.ChatInterface(me.chat, type="messages").launch(debug=True, share=False)