File size: 5,977 Bytes
4b89916 32e3e0c 6ce3660 32e3e0c 4b89916 32e3e0c 50582af 32e3e0c 0f3fe6e 9dd4f7d 5754255 aeb407d 7ca89a1 aeb407d 2a5ff21 32e3e0c e9ce4fc 4b52f16 0f3fe6e 4b52f16 32e3e0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
#from dotenv import load_dotenv
from openai import OpenAI
import json
import os
import requests
from PyPDF2 import PdfReader
import gradio as gr
#load_dotenv(override=True)
def push(text):
requests.post(
"https://api.pushover.net/1/messages.json",
data={
"token": os.getenv("PUSHOVER_TOKEN"),
"user": os.getenv("PUSHOVER_USER"),
"message": text,
}
)
def record_user_details(email, name="Name not provided", notes="not provided"):
push(f"Recording {name} with email {email} and notes {notes}")
return {"recorded": "ok"}
def record_unknown_question(question):
push(f"Recording {question}")
return {"recorded": "ok"}
record_user_details_json = {
"name": "record_user_details",
"description": "Use this tool to record that a user is interested in being in touch and provided an email address",
"parameters": {
"type": "object",
"properties": {
"email": {
"type": "string",
"description": "The email address of this user"
},
"name": {
"type": "string",
"description": "The user's name, if they provided it"
}
,
"notes": {
"type": "string",
"description": "Any additional information about the conversation that's worth recording to give context"
}
},
"required": ["email"],
"additionalProperties": False
}
}
record_unknown_question_json = {
"name": "record_unknown_question",
"description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
"parameters": {
"type": "object",
"properties": {
"question": {
"type": "string",
"description": "The question that couldn't be answered"
},
},
"required": ["question"],
"additionalProperties": False
}
}
tools = [{"type": "function", "function": record_user_details_json},
{"type": "function", "function": record_unknown_question_json}]
class Me:
def __init__(self):
open_router_api_key = os.getenv('OPEN_ROUTER_API_KEY')
if open_router_api_key:
print(f"Open router API Key exists and begins {open_router_api_key[:8]}")
else:
print("Open router API Key not set - please head to the troubleshooting guide in the setup folder")
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=os.environ.get('OPEN_ROUTER_API_KEY')
)
self.name = "Chaoran Zhou"
reader = PdfReader("me/linkedin.pdf")
self.linkedin = ""
for page in reader.pages:
text = page.extract_text()
if text:
self.linkedin += text
with open("me/summary.txt", "r", encoding="utf-8") as f:
self.summary = f.read()
def handle_tool_call(self, tool_calls):
results = []
for tool_call in tool_calls:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
print(f"Tool called: {tool_name}", flush=True)
tool = globals().get(tool_name)
result = tool(**arguments) if tool else {}
results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
return results
def system_prompt(self):
system_prompt = f"You are acting as {self.name}. You are answering questions on {self.name}'s website, \
particularly questions related to {self.name}'s career, background, skills and experience. \
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible. \
You are given a summary of {self.name}'s background and LinkedIn profile which you can use to answer questions. \
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
return system_prompt
def chat(self, message, history):
messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
done = False
while not done:
#response = self.client.chat.completions.create(model="meta-llama/llama-3.3-8b-instruct:free", messages=messages, tools=tools)
try:
response = self.openai.chat.completions.create(
model="meta-llama/llama-3.3-8b-instruct:free",
messages=messages,
tools=tools
)
except Exception as e:
print(f"Error during OpenAI API call: {e}")
if response.choices[0].finish_reason=="tool_calls":
message = response.choices[0].message
tool_calls = message.tool_calls
results = self.handle_tool_call(tool_calls)
messages.append(message)
messages.extend(results)
else:
done = True
return response.choices[0].message.content
if __name__ == "__main__":
me = Me()
gr.ChatInterface(me.chat, type="messages").launch()
|