Spaces:
Paused
Paused
import copy | |
import os | |
import random | |
from collections import OrderedDict | |
from typing import Union | |
from PIL import Image | |
from diffusers import T2IAdapter | |
from torchvision.transforms import transforms | |
from tqdm import tqdm | |
from toolkit.basic import value_map | |
from toolkit.config_modules import SliderConfig | |
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
from toolkit.sd_device_states_presets import get_train_sd_device_state_preset | |
from toolkit.train_tools import get_torch_dtype, apply_snr_weight, apply_learnable_snr_gos | |
import gc | |
from toolkit import train_tools | |
from toolkit.prompt_utils import \ | |
EncodedPromptPair, ACTION_TYPES_SLIDER, \ | |
EncodedAnchor, concat_prompt_pairs, \ | |
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \ | |
split_prompt_pairs | |
import torch | |
from .BaseSDTrainProcess import BaseSDTrainProcess | |
def flush(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
adapter_transforms = transforms.Compose([ | |
transforms.ToTensor(), | |
]) | |
class TrainSliderProcess(BaseSDTrainProcess): | |
def __init__(self, process_id: int, job, config: OrderedDict): | |
super().__init__(process_id, job, config) | |
self.prompt_txt_list = None | |
self.step_num = 0 | |
self.start_step = 0 | |
self.device = self.get_conf('device', self.job.device) | |
self.device_torch = torch.device(self.device) | |
self.slider_config = SliderConfig(**self.get_conf('slider', {})) | |
self.prompt_cache = PromptEmbedsCache() | |
self.prompt_pairs: list[EncodedPromptPair] = [] | |
self.anchor_pairs: list[EncodedAnchor] = [] | |
# keep track of prompt chunk size | |
self.prompt_chunk_size = 1 | |
# check if we have more targets than steps | |
# this can happen because of permutation son shuffling | |
if len(self.slider_config.targets) > self.train_config.steps: | |
# trim targets | |
self.slider_config.targets = self.slider_config.targets[:self.train_config.steps] | |
# get presets | |
self.eval_slider_device_state = get_train_sd_device_state_preset( | |
self.device_torch, | |
train_unet=False, | |
train_text_encoder=False, | |
cached_latents=self.is_latents_cached, | |
train_lora=False, | |
train_adapter=False, | |
train_embedding=False, | |
) | |
self.train_slider_device_state = get_train_sd_device_state_preset( | |
self.device_torch, | |
train_unet=self.train_config.train_unet, | |
train_text_encoder=False, | |
cached_latents=self.is_latents_cached, | |
train_lora=True, | |
train_adapter=False, | |
train_embedding=False, | |
) | |
def before_model_load(self): | |
pass | |
def hook_before_train_loop(self): | |
# read line by line from file | |
if self.slider_config.prompt_file: | |
self.print(f"Loading prompt file from {self.slider_config.prompt_file}") | |
with open(self.slider_config.prompt_file, 'r', encoding='utf-8') as f: | |
self.prompt_txt_list = f.readlines() | |
# clean empty lines | |
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0] | |
self.print(f"Found {len(self.prompt_txt_list)} prompts.") | |
if not self.slider_config.prompt_tensors: | |
print(f"Prompt tensors not found. Building prompt tensors for {self.train_config.steps} steps.") | |
# shuffle | |
random.shuffle(self.prompt_txt_list) | |
# trim to max steps | |
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps] | |
# trim list to our max steps | |
cache = PromptEmbedsCache() | |
print(f"Building prompt cache") | |
# get encoded latents for our prompts | |
with torch.no_grad(): | |
# list of neutrals. Can come from file or be empty | |
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""] | |
# build the prompts to cache | |
prompts_to_cache = [] | |
for neutral in neutral_list: | |
for target in self.slider_config.targets: | |
prompt_list = [ | |
f"{target.target_class}", # target_class | |
f"{target.target_class} {neutral}", # target_class with neutral | |
f"{target.positive}", # positive_target | |
f"{target.positive} {neutral}", # positive_target with neutral | |
f"{target.negative}", # negative_target | |
f"{target.negative} {neutral}", # negative_target with neutral | |
f"{neutral}", # neutral | |
f"{target.positive} {target.negative}", # both targets | |
f"{target.negative} {target.positive}", # both targets reverse | |
] | |
prompts_to_cache += prompt_list | |
# remove duplicates | |
prompts_to_cache = list(dict.fromkeys(prompts_to_cache)) | |
# trim to max steps if max steps is lower than prompt count | |
# todo, this can break if we have more targets than steps, should be fixed, by reducing permuations, but could stil happen with low steps | |
# prompts_to_cache = prompts_to_cache[:self.train_config.steps] | |
# encode them | |
cache = encode_prompts_to_cache( | |
prompt_list=prompts_to_cache, | |
sd=self.sd, | |
cache=cache, | |
prompt_tensor_file=self.slider_config.prompt_tensors | |
) | |
prompt_pairs = [] | |
prompt_batches = [] | |
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False): | |
for target in self.slider_config.targets: | |
prompt_pair_batch = build_prompt_pair_batch_from_cache( | |
cache=cache, | |
target=target, | |
neutral=neutral, | |
) | |
if self.slider_config.batch_full_slide: | |
# concat the prompt pairs | |
# this allows us to run the entire 4 part process in one shot (for slider) | |
self.prompt_chunk_size = 4 | |
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu') | |
prompt_pairs += [concat_prompt_pair_batch] | |
else: | |
self.prompt_chunk_size = 1 | |
# do them one at a time (probably not necessary after new optimizations) | |
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch] | |
# setup anchors | |
anchor_pairs = [] | |
for anchor in self.slider_config.anchors: | |
# build the cache | |
for prompt in [ | |
anchor.prompt, | |
anchor.neg_prompt # empty neutral | |
]: | |
if cache[prompt] == None: | |
cache[prompt] = self.sd.encode_prompt(prompt) | |
anchor_batch = [] | |
# we get the prompt pair multiplier from first prompt pair | |
# since they are all the same. We need to match their network polarity | |
prompt_pair_multipliers = prompt_pairs[0].multiplier_list | |
for prompt_multiplier in prompt_pair_multipliers: | |
# match the network multiplier polarity | |
anchor_scalar = 1.0 if prompt_multiplier > 0 else -1.0 | |
anchor_batch += [ | |
EncodedAnchor( | |
prompt=cache[anchor.prompt], | |
neg_prompt=cache[anchor.neg_prompt], | |
multiplier=anchor.multiplier * anchor_scalar | |
) | |
] | |
anchor_pairs += [ | |
concat_anchors(anchor_batch).to('cpu') | |
] | |
if len(anchor_pairs) > 0: | |
self.anchor_pairs = anchor_pairs | |
# move to cpu to save vram | |
# We don't need text encoder anymore, but keep it on cpu for sampling | |
# if text encoder is list | |
if isinstance(self.sd.text_encoder, list): | |
for encoder in self.sd.text_encoder: | |
encoder.to("cpu") | |
else: | |
self.sd.text_encoder.to("cpu") | |
self.prompt_cache = cache | |
self.prompt_pairs = prompt_pairs | |
# self.anchor_pairs = anchor_pairs | |
flush() | |
if self.data_loader is not None: | |
# we will have images, prep the vae | |
self.sd.vae.eval() | |
self.sd.vae.to(self.device_torch) | |
# end hook_before_train_loop | |
def before_dataset_load(self): | |
if self.slider_config.use_adapter == 'depth': | |
print(f"Loading T2I Adapter for depth") | |
# called before LoRA network is loaded but after model is loaded | |
# attach the adapter here so it is there before we load the network | |
adapter_path = 'TencentARC/t2iadapter_depth_sd15v2' | |
if self.model_config.is_xl: | |
adapter_path = 'TencentARC/t2i-adapter-depth-midas-sdxl-1.0' | |
print(f"Loading T2I Adapter from {adapter_path}") | |
# dont name this adapter since we are not training it | |
self.t2i_adapter = T2IAdapter.from_pretrained( | |
adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype), varient="fp16" | |
).to(self.device_torch) | |
self.t2i_adapter.eval() | |
self.t2i_adapter.requires_grad_(False) | |
flush() | |
def get_adapter_images(self, batch: Union[None, 'DataLoaderBatchDTO']): | |
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp'] | |
adapter_folder_path = self.slider_config.adapter_img_dir | |
adapter_images = [] | |
# loop through images | |
for file_item in batch.file_items: | |
img_path = file_item.path | |
file_name_no_ext = os.path.basename(img_path).split('.')[0] | |
# find the image | |
for ext in img_ext_list: | |
if os.path.exists(os.path.join(adapter_folder_path, file_name_no_ext + ext)): | |
adapter_images.append(os.path.join(adapter_folder_path, file_name_no_ext + ext)) | |
break | |
width, height = batch.file_items[0].crop_width, batch.file_items[0].crop_height | |
adapter_tensors = [] | |
# load images with torch transforms | |
for idx, adapter_image in enumerate(adapter_images): | |
# we need to centrally crop the largest dimension of the image to match the batch shape after scaling | |
# to the smallest dimension | |
img: Image.Image = Image.open(adapter_image) | |
if img.width > img.height: | |
# scale down so height is the same as batch | |
new_height = height | |
new_width = int(img.width * (height / img.height)) | |
else: | |
new_width = width | |
new_height = int(img.height * (width / img.width)) | |
img = img.resize((new_width, new_height)) | |
crop_fn = transforms.CenterCrop((height, width)) | |
# crop the center to match batch | |
img = crop_fn(img) | |
img = adapter_transforms(img) | |
adapter_tensors.append(img) | |
# stack them | |
adapter_tensors = torch.stack(adapter_tensors).to( | |
self.device_torch, dtype=get_torch_dtype(self.train_config.dtype) | |
) | |
return adapter_tensors | |
def hook_train_loop(self, batch: Union['DataLoaderBatchDTO', None]): | |
if isinstance(batch, list): | |
batch = batch[0] | |
# set to eval mode | |
self.sd.set_device_state(self.eval_slider_device_state) | |
with torch.no_grad(): | |
dtype = get_torch_dtype(self.train_config.dtype) | |
# get a random pair | |
prompt_pair: EncodedPromptPair = self.prompt_pairs[ | |
torch.randint(0, len(self.prompt_pairs), (1,)).item() | |
] | |
# move to device and dtype | |
prompt_pair.to(self.device_torch, dtype=dtype) | |
# get a random resolution | |
height, width = self.slider_config.resolutions[ | |
torch.randint(0, len(self.slider_config.resolutions), (1,)).item() | |
] | |
if self.train_config.gradient_checkpointing: | |
# may get disabled elsewhere | |
self.sd.unet.enable_gradient_checkpointing() | |
noise_scheduler = self.sd.noise_scheduler | |
optimizer = self.optimizer | |
lr_scheduler = self.lr_scheduler | |
loss_function = torch.nn.MSELoss() | |
pred_kwargs = {} | |
def get_noise_pred(neg, pos, gs, cts, dn): | |
down_kwargs = copy.deepcopy(pred_kwargs) | |
if 'down_block_additional_residuals' in down_kwargs: | |
dbr_batch_size = down_kwargs['down_block_additional_residuals'][0].shape[0] | |
if dbr_batch_size != dn.shape[0]: | |
amount_to_add = int(dn.shape[0] * 2 / dbr_batch_size) | |
down_kwargs['down_block_additional_residuals'] = [ | |
torch.cat([sample.clone()] * amount_to_add) for sample in | |
down_kwargs['down_block_additional_residuals'] | |
] | |
return self.sd.predict_noise( | |
latents=dn, | |
text_embeddings=train_tools.concat_prompt_embeddings( | |
neg, # negative prompt | |
pos, # positive prompt | |
self.train_config.batch_size, | |
), | |
timestep=cts, | |
guidance_scale=gs, | |
**down_kwargs | |
) | |
with torch.no_grad(): | |
adapter_images = None | |
self.sd.unet.eval() | |
# for a complete slider, the batch size is 4 to begin with now | |
true_batch_size = prompt_pair.target_class.text_embeds.shape[0] * self.train_config.batch_size | |
from_batch = False | |
if batch is not None: | |
# traing from a batch of images, not generating ourselves | |
from_batch = True | |
noisy_latents, noise, timesteps, conditioned_prompts, imgs = self.process_general_training_batch(batch) | |
if self.slider_config.adapter_img_dir is not None: | |
adapter_images = self.get_adapter_images(batch) | |
adapter_strength_min = 0.9 | |
adapter_strength_max = 1.0 | |
def rand_strength(sample): | |
adapter_conditioning_scale = torch.rand( | |
(1,), device=self.device_torch, dtype=dtype | |
) | |
adapter_conditioning_scale = value_map( | |
adapter_conditioning_scale, | |
0.0, | |
1.0, | |
adapter_strength_min, | |
adapter_strength_max | |
) | |
return sample.to(self.device_torch, dtype=dtype).detach() * adapter_conditioning_scale | |
down_block_additional_residuals = self.t2i_adapter(adapter_images) | |
down_block_additional_residuals = [ | |
rand_strength(sample) for sample in down_block_additional_residuals | |
] | |
pred_kwargs['down_block_additional_residuals'] = down_block_additional_residuals | |
denoised_latents = torch.cat([noisy_latents] * self.prompt_chunk_size, dim=0) | |
current_timestep = timesteps | |
else: | |
if self.train_config.noise_scheduler == 'flowmatch': | |
linear_timesteps = any([ | |
self.train_config.linear_timesteps, | |
self.train_config.linear_timesteps2, | |
self.train_config.timestep_type == 'linear', | |
]) | |
timestep_type = 'linear' if linear_timesteps else None | |
if timestep_type is None: | |
timestep_type = self.train_config.timestep_type | |
# make fake latents | |
l = torch.randn( | |
true_batch_size, 16, height, width | |
).to(self.device_torch, dtype=dtype) | |
self.sd.noise_scheduler.set_train_timesteps( | |
self.train_config.max_denoising_steps, | |
device=self.device_torch, | |
timestep_type=timestep_type, | |
latents=l | |
) | |
else: | |
self.sd.noise_scheduler.set_timesteps( | |
self.train_config.max_denoising_steps, device=self.device_torch | |
) | |
# ger a random number of steps | |
timesteps_to = torch.randint( | |
1, self.train_config.max_denoising_steps - 1, (1,) | |
).item() | |
# get noise | |
noise = self.sd.get_latent_noise( | |
pixel_height=height, | |
pixel_width=width, | |
batch_size=true_batch_size, | |
noise_offset=self.train_config.noise_offset, | |
).to(self.device_torch, dtype=dtype) | |
# get latents | |
latents = noise * self.sd.noise_scheduler.init_noise_sigma | |
latents = latents.to(self.device_torch, dtype=dtype) | |
assert not self.network.is_active | |
self.sd.unet.eval() | |
# pass the multiplier list to the network | |
# double up since we are doing cfg | |
self.network.multiplier = prompt_pair.multiplier_list + prompt_pair.multiplier_list | |
denoised_latents = self.sd.diffuse_some_steps( | |
latents, # pass simple noise latents | |
train_tools.concat_prompt_embeddings( | |
prompt_pair.positive_target, # unconditional | |
prompt_pair.target_class, # target | |
self.train_config.batch_size, | |
), | |
start_timesteps=0, | |
total_timesteps=timesteps_to, | |
guidance_scale=3, | |
) | |
noise_scheduler.set_timesteps(1000) | |
current_timestep_index = int(timesteps_to * 1000 / self.train_config.max_denoising_steps) | |
current_timestep = noise_scheduler.timesteps[current_timestep_index] | |
# split the latents into out prompt pair chunks | |
denoised_latent_chunks = torch.chunk(denoised_latents, self.prompt_chunk_size, dim=0) | |
denoised_latent_chunks = [x.detach() for x in denoised_latent_chunks] | |
# flush() # 4.2GB to 3GB on 512x512 | |
mask_multiplier = torch.ones((denoised_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype) | |
has_mask = False | |
if batch and batch.mask_tensor is not None: | |
with self.timer('get_mask_multiplier'): | |
# upsampling no supported for bfloat16 | |
mask_multiplier = batch.mask_tensor.to(self.device_torch, dtype=torch.float16).detach() | |
# scale down to the size of the latents, mask multiplier shape(bs, 1, width, height), noisy_latents shape(bs, channels, width, height) | |
mask_multiplier = torch.nn.functional.interpolate( | |
mask_multiplier, size=(noisy_latents.shape[2], noisy_latents.shape[3]) | |
) | |
# expand to match latents | |
mask_multiplier = mask_multiplier.expand(-1, noisy_latents.shape[1], -1, -1) | |
mask_multiplier = mask_multiplier.to(self.device_torch, dtype=dtype).detach() | |
has_mask = True | |
if has_mask: | |
unmasked_target = get_noise_pred( | |
prompt_pair.positive_target, # negative prompt | |
prompt_pair.target_class, # positive prompt | |
1, | |
current_timestep, | |
denoised_latents | |
) | |
unmasked_target = unmasked_target.detach() | |
unmasked_target.requires_grad = False | |
else: | |
unmasked_target = None | |
# 4.20 GB RAM for 512x512 | |
positive_latents = get_noise_pred( | |
prompt_pair.positive_target, # negative prompt | |
prompt_pair.negative_target, # positive prompt | |
1, | |
current_timestep, | |
denoised_latents | |
) | |
positive_latents = positive_latents.detach() | |
positive_latents.requires_grad = False | |
neutral_latents = get_noise_pred( | |
prompt_pair.positive_target, # negative prompt | |
prompt_pair.empty_prompt, # positive prompt (normally neutral | |
1, | |
current_timestep, | |
denoised_latents | |
) | |
neutral_latents = neutral_latents.detach() | |
neutral_latents.requires_grad = False | |
unconditional_latents = get_noise_pred( | |
prompt_pair.positive_target, # negative prompt | |
prompt_pair.positive_target, # positive prompt | |
1, | |
current_timestep, | |
denoised_latents | |
) | |
unconditional_latents = unconditional_latents.detach() | |
unconditional_latents.requires_grad = False | |
denoised_latents = denoised_latents.detach() | |
self.sd.set_device_state(self.train_slider_device_state) | |
self.sd.unet.train() | |
# start accumulating gradients | |
self.optimizer.zero_grad(set_to_none=True) | |
anchor_loss_float = None | |
if len(self.anchor_pairs) > 0: | |
with torch.no_grad(): | |
# get a random anchor pair | |
anchor: EncodedAnchor = self.anchor_pairs[ | |
torch.randint(0, len(self.anchor_pairs), (1,)).item() | |
] | |
anchor.to(self.device_torch, dtype=dtype) | |
# first we get the target prediction without network active | |
anchor_target_noise = get_noise_pred( | |
anchor.neg_prompt, anchor.prompt, 1, current_timestep, denoised_latents | |
# ).to("cpu", dtype=torch.float32) | |
).requires_grad_(False) | |
# to save vram, we will run these through separately while tracking grads | |
# otherwise it consumes a ton of vram and this isn't our speed bottleneck | |
anchor_chunks = split_anchors(anchor, self.prompt_chunk_size) | |
anchor_target_noise_chunks = torch.chunk(anchor_target_noise, self.prompt_chunk_size, dim=0) | |
assert len(anchor_chunks) == len(denoised_latent_chunks) | |
# 4.32 GB RAM for 512x512 | |
with self.network: | |
assert self.network.is_active | |
anchor_float_losses = [] | |
for anchor_chunk, denoised_latent_chunk, anchor_target_noise_chunk in zip( | |
anchor_chunks, denoised_latent_chunks, anchor_target_noise_chunks | |
): | |
self.network.multiplier = anchor_chunk.multiplier_list + anchor_chunk.multiplier_list | |
anchor_pred_noise = get_noise_pred( | |
anchor_chunk.neg_prompt, anchor_chunk.prompt, 1, current_timestep, denoised_latent_chunk | |
) | |
# 9.42 GB RAM for 512x512 -> 4.20 GB RAM for 512x512 with new grad_checkpointing | |
anchor_loss = loss_function( | |
anchor_target_noise_chunk, | |
anchor_pred_noise, | |
) | |
anchor_float_losses.append(anchor_loss.item()) | |
# compute anchor loss gradients | |
# we will accumulate them later | |
# this saves a ton of memory doing them separately | |
anchor_loss.backward() | |
del anchor_pred_noise | |
del anchor_target_noise_chunk | |
del anchor_loss | |
flush() | |
anchor_loss_float = sum(anchor_float_losses) / len(anchor_float_losses) | |
del anchor_chunks | |
del anchor_target_noise_chunks | |
del anchor_target_noise | |
# move anchor back to cpu | |
anchor.to("cpu") | |
with torch.no_grad(): | |
if self.slider_config.low_ram: | |
prompt_pair_chunks = split_prompt_pairs(prompt_pair.detach(), self.prompt_chunk_size) | |
denoised_latent_chunks = denoised_latent_chunks # just to have it in one place | |
positive_latents_chunks = torch.chunk(positive_latents.detach(), self.prompt_chunk_size, dim=0) | |
neutral_latents_chunks = torch.chunk(neutral_latents.detach(), self.prompt_chunk_size, dim=0) | |
unconditional_latents_chunks = torch.chunk( | |
unconditional_latents.detach(), | |
self.prompt_chunk_size, | |
dim=0 | |
) | |
mask_multiplier_chunks = torch.chunk(mask_multiplier, self.prompt_chunk_size, dim=0) | |
if unmasked_target is not None: | |
unmasked_target_chunks = torch.chunk(unmasked_target, self.prompt_chunk_size, dim=0) | |
else: | |
unmasked_target_chunks = [None for _ in range(self.prompt_chunk_size)] | |
else: | |
# run through in one instance | |
prompt_pair_chunks = [prompt_pair.detach()] | |
denoised_latent_chunks = [torch.cat(denoised_latent_chunks, dim=0).detach()] | |
positive_latents_chunks = [positive_latents.detach()] | |
neutral_latents_chunks = [neutral_latents.detach()] | |
unconditional_latents_chunks = [unconditional_latents.detach()] | |
mask_multiplier_chunks = [mask_multiplier] | |
unmasked_target_chunks = [unmasked_target] | |
# flush() | |
assert len(prompt_pair_chunks) == len(denoised_latent_chunks) | |
# 3.28 GB RAM for 512x512 | |
with self.network: | |
assert self.network.is_active | |
loss_list = [] | |
for prompt_pair_chunk, \ | |
denoised_latent_chunk, \ | |
positive_latents_chunk, \ | |
neutral_latents_chunk, \ | |
unconditional_latents_chunk, \ | |
mask_multiplier_chunk, \ | |
unmasked_target_chunk \ | |
in zip( | |
prompt_pair_chunks, | |
denoised_latent_chunks, | |
positive_latents_chunks, | |
neutral_latents_chunks, | |
unconditional_latents_chunks, | |
mask_multiplier_chunks, | |
unmasked_target_chunks | |
): | |
self.network.multiplier = prompt_pair_chunk.multiplier_list + prompt_pair_chunk.multiplier_list | |
target_latents = get_noise_pred( | |
prompt_pair_chunk.positive_target, | |
prompt_pair_chunk.target_class, | |
1, | |
current_timestep, | |
denoised_latent_chunk | |
) | |
guidance_scale = 1.0 | |
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk) | |
# make offset multiplier based on actions | |
offset_multiplier_list = [] | |
for action in prompt_pair_chunk.action_list: | |
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE: | |
offset_multiplier_list += [-1.0] | |
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE: | |
offset_multiplier_list += [1.0] | |
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype) | |
# make offset multiplier match rank of offset | |
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1) | |
offset *= offset_multiplier | |
offset_neutral = neutral_latents_chunk | |
# offsets are already adjusted on a per-batch basis | |
offset_neutral += offset | |
offset_neutral = offset_neutral.detach().requires_grad_(False) | |
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing | |
loss = torch.nn.functional.mse_loss(target_latents.float(), offset_neutral.float(), reduction="none") | |
# do inverted mask to preserve non masked | |
if has_mask and unmasked_target_chunk is not None: | |
loss = loss * mask_multiplier_chunk | |
# match the mask unmasked_target_chunk | |
mask_target_loss = torch.nn.functional.mse_loss( | |
target_latents.float(), | |
unmasked_target_chunk.float(), | |
reduction="none" | |
) | |
mask_target_loss = mask_target_loss * (1.0 - mask_multiplier_chunk) | |
loss += mask_target_loss | |
loss = loss.mean([1, 2, 3]) | |
if self.train_config.learnable_snr_gos: | |
if from_batch: | |
# match batch size | |
loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, | |
self.train_config.min_snr_gamma) | |
else: | |
# match batch size | |
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])] | |
# add snr_gamma | |
loss = apply_learnable_snr_gos(loss, timesteps_index_list, self.snr_gos) | |
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001: | |
if from_batch: | |
# match batch size | |
loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler, | |
self.train_config.min_snr_gamma) | |
else: | |
# match batch size | |
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])] | |
# add min_snr_gamma | |
loss = apply_snr_weight(loss, timesteps_index_list, noise_scheduler, | |
self.train_config.min_snr_gamma) | |
loss = loss.mean() * prompt_pair_chunk.weight | |
loss.backward() | |
loss_list.append(loss.item()) | |
del target_latents | |
del offset_neutral | |
del loss | |
# flush() | |
optimizer.step() | |
lr_scheduler.step() | |
loss_float = sum(loss_list) / len(loss_list) | |
if anchor_loss_float is not None: | |
loss_float += anchor_loss_float | |
del ( | |
positive_latents, | |
neutral_latents, | |
unconditional_latents, | |
# latents | |
) | |
# move back to cpu | |
prompt_pair.to("cpu") | |
# flush() | |
# reset network | |
self.network.multiplier = 1.0 | |
loss_dict = OrderedDict( | |
{'loss': loss_float}, | |
) | |
if anchor_loss_float is not None: | |
loss_dict['sl_l'] = loss_float | |
loss_dict['an_l'] = anchor_loss_float | |
return loss_dict | |
# end hook_train_loop | |