Upload folder using huggingface_hub
Browse files- .gitignore +6 -0
- .ipynb_checkpoints/Coqui.ai-Copy1-checkpoint.ipynb +242 -1086
- Coqui.ai-Copy1.ipynb +880 -0
- Coqui.ai.ipynb +425 -0
- app.bak.py +160 -0
- app.py +30 -5
- tts/voice_conversion_models--multilingual--vctk--freevc24/._config.json +0 -0
- tts/voice_conversion_models--multilingual--vctk--freevc24/._model.pth +3 -0
- tts/voice_conversion_models--multilingual--vctk--freevc24/._voice_conversion_models--multilingual--vctk--freevc24 +0 -0
- tts/voice_conversion_models--multilingual--vctk--freevc24/__MACOSX/._voice_conversion_models--multilingual--vctk--freevc24 +0 -0
- tts/voice_conversion_models--multilingual--vctk--freevc24/__MACOSX/voice_conversion_models--multilingual--vctk--freevc24/._config.json +0 -0
- tts/voice_conversion_models--multilingual--vctk--freevc24/__MACOSX/voice_conversion_models--multilingual--vctk--freevc24/._model.pth +3 -0
- tts/voice_conversion_models--multilingual--vctk--freevc24/config.json +204 -0
- tts/voice_conversion_models--multilingual--vctk--freevc24/model.pth +3 -0
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#checkpoints
|
2 |
+
tts/
|
3 |
+
|
4 |
+
#notebooks and bak files
|
5 |
+
*.bak.py
|
6 |
+
*.ipynb
|
.ipynb_checkpoints/Coqui.ai-Copy1-checkpoint.ipynb
CHANGED
@@ -2,8 +2,8 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
-
"id": "
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
@@ -15,13 +15,14 @@
|
|
15 |
"import tempfile\n",
|
16 |
"\n",
|
17 |
"from TTS.api import TTS\n",
|
18 |
-
"from TTS.utils.manage import ModelManager"
|
|
|
19 |
]
|
20 |
},
|
21 |
{
|
22 |
"cell_type": "code",
|
23 |
-
"execution_count":
|
24 |
-
"id": "
|
25 |
"metadata": {
|
26 |
"scrolled": false
|
27 |
},
|
@@ -35,8 +36,8 @@
|
|
35 |
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
36 |
" > Using model: freevc\n",
|
37 |
" > Loading pretrained speaker encoder model ...\n",
|
38 |
-
"Loaded the voice encoder model on cpu in 0.
|
39 |
-
"Running on local URL: http://127.0.0.1:
|
40 |
"\n",
|
41 |
"To create a public link, set `share=True` in `launch()`.\n"
|
42 |
]
|
@@ -44,7 +45,7 @@
|
|
44 |
{
|
45 |
"data": {
|
46 |
"text/html": [
|
47 |
-
"<div><iframe src=\"http://127.0.0.1:
|
48 |
],
|
49 |
"text/plain": [
|
50 |
"<IPython.core.display.HTML object>"
|
@@ -57,7 +58,7 @@
|
|
57 |
"data": {
|
58 |
"text/plain": []
|
59 |
},
|
60 |
-
"execution_count":
|
61 |
"metadata": {},
|
62 |
"output_type": "execute_result"
|
63 |
},
|
@@ -71,1066 +72,7 @@
|
|
71 |
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
72 |
" > Model's license - apache 2.0\n",
|
73 |
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
74 |
-
" > Using model: Tacotron2\n"
|
75 |
-
" > Setting up Audio Processor...\n",
|
76 |
-
" | > sample_rate:22050\n",
|
77 |
-
" | > resample:False\n",
|
78 |
-
" | > num_mels:80\n",
|
79 |
-
" | > log_func:np.log10\n",
|
80 |
-
" | > min_level_db:-100\n",
|
81 |
-
" | > frame_shift_ms:None\n",
|
82 |
-
" | > frame_length_ms:None\n",
|
83 |
-
" | > ref_level_db:20\n",
|
84 |
-
" | > fft_size:1024\n",
|
85 |
-
" | > power:1.5\n",
|
86 |
-
" | > preemphasis:0.0\n",
|
87 |
-
" | > griffin_lim_iters:60\n",
|
88 |
-
" | > signal_norm:True\n",
|
89 |
-
" | > symmetric_norm:True\n",
|
90 |
-
" | > mel_fmin:50.0\n",
|
91 |
-
" | > mel_fmax:7600.0\n",
|
92 |
-
" | > pitch_fmin:0.0\n",
|
93 |
-
" | > pitch_fmax:640.0\n",
|
94 |
-
" | > spec_gain:1.0\n",
|
95 |
-
" | > stft_pad_mode:reflect\n",
|
96 |
-
" | > max_norm:4.0\n",
|
97 |
-
" | > clip_norm:True\n",
|
98 |
-
" | > do_trim_silence:True\n",
|
99 |
-
" | > trim_db:60\n",
|
100 |
-
" | > do_sound_norm:False\n",
|
101 |
-
" | > do_amp_to_db_linear:True\n",
|
102 |
-
" | > do_amp_to_db_mel:True\n",
|
103 |
-
" | > do_rms_norm:False\n",
|
104 |
-
" | > db_level:None\n",
|
105 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
106 |
-
" | > base:10\n",
|
107 |
-
" | > hop_length:256\n",
|
108 |
-
" | > win_length:1024\n",
|
109 |
-
" > Model's reduction rate `r` is set to: 2\n",
|
110 |
-
" > Vocoder Model: univnet\n",
|
111 |
-
" > Setting up Audio Processor...\n",
|
112 |
-
" | > sample_rate:22050\n",
|
113 |
-
" | > resample:False\n",
|
114 |
-
" | > num_mels:80\n",
|
115 |
-
" | > log_func:np.log10\n",
|
116 |
-
" | > min_level_db:-100\n",
|
117 |
-
" | > frame_shift_ms:None\n",
|
118 |
-
" | > frame_length_ms:None\n",
|
119 |
-
" | > ref_level_db:20\n",
|
120 |
-
" | > fft_size:1024\n",
|
121 |
-
" | > power:1.5\n",
|
122 |
-
" | > preemphasis:0.0\n",
|
123 |
-
" | > griffin_lim_iters:60\n",
|
124 |
-
" | > signal_norm:True\n",
|
125 |
-
" | > symmetric_norm:True\n",
|
126 |
-
" | > mel_fmin:50.0\n",
|
127 |
-
" | > mel_fmax:7600.0\n",
|
128 |
-
" | > pitch_fmin:1.0\n",
|
129 |
-
" | > pitch_fmax:640.0\n",
|
130 |
-
" | > spec_gain:1.0\n",
|
131 |
-
" | > stft_pad_mode:reflect\n",
|
132 |
-
" | > max_norm:4.0\n",
|
133 |
-
" | > clip_norm:True\n",
|
134 |
-
" | > do_trim_silence:True\n",
|
135 |
-
" | > trim_db:60\n",
|
136 |
-
" | > do_sound_norm:False\n",
|
137 |
-
" | > do_amp_to_db_linear:True\n",
|
138 |
-
" | > do_amp_to_db_mel:True\n",
|
139 |
-
" | > do_rms_norm:False\n",
|
140 |
-
" | > db_level:None\n",
|
141 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
142 |
-
" | > base:10\n",
|
143 |
-
" | > hop_length:256\n",
|
144 |
-
" | > win_length:1024\n",
|
145 |
-
" > Generator Model: univnet_generator\n",
|
146 |
-
" > Discriminator Model: univnet_discriminator\n",
|
147 |
-
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
148 |
-
"language: \n",
|
149 |
-
"speaker: \n",
|
150 |
-
"voice cloning with the voice conversion model\n",
|
151 |
-
" > Text splitted to sentences.\n",
|
152 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
153 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
154 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
155 |
-
" > Processing time: 3.3410003185272217\n",
|
156 |
-
" > Real-time factor: 0.38459038289093944\n",
|
157 |
-
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
158 |
-
"language: \n",
|
159 |
-
"speaker: \n",
|
160 |
-
"voice cloning with the voice conversion model\n",
|
161 |
-
" > Text splitted to sentences.\n",
|
162 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
163 |
-
" > Processing time: 2.9179999828338623\n",
|
164 |
-
" > Real-time factor: 0.3358978221135079\n",
|
165 |
-
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
166 |
-
" > Model's license - apache 2.0\n",
|
167 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
168 |
-
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
169 |
-
" > Model's license - apache 2.0\n",
|
170 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
171 |
-
" > Using model: Tacotron2\n",
|
172 |
-
" > Setting up Audio Processor...\n",
|
173 |
-
" | > sample_rate:22050\n",
|
174 |
-
" | > resample:False\n",
|
175 |
-
" | > num_mels:80\n",
|
176 |
-
" | > log_func:np.log10\n",
|
177 |
-
" | > min_level_db:-100\n",
|
178 |
-
" | > frame_shift_ms:None\n",
|
179 |
-
" | > frame_length_ms:None\n",
|
180 |
-
" | > ref_level_db:20\n",
|
181 |
-
" | > fft_size:1024\n",
|
182 |
-
" | > power:1.5\n",
|
183 |
-
" | > preemphasis:0.0\n",
|
184 |
-
" | > griffin_lim_iters:60\n",
|
185 |
-
" | > signal_norm:True\n",
|
186 |
-
" | > symmetric_norm:True\n",
|
187 |
-
" | > mel_fmin:50.0\n",
|
188 |
-
" | > mel_fmax:7600.0\n",
|
189 |
-
" | > pitch_fmin:0.0\n",
|
190 |
-
" | > pitch_fmax:640.0\n",
|
191 |
-
" | > spec_gain:1.0\n",
|
192 |
-
" | > stft_pad_mode:reflect\n",
|
193 |
-
" | > max_norm:4.0\n",
|
194 |
-
" | > clip_norm:True\n",
|
195 |
-
" | > do_trim_silence:True\n",
|
196 |
-
" | > trim_db:60\n",
|
197 |
-
" | > do_sound_norm:False\n",
|
198 |
-
" | > do_amp_to_db_linear:True\n",
|
199 |
-
" | > do_amp_to_db_mel:True\n",
|
200 |
-
" | > do_rms_norm:False\n",
|
201 |
-
" | > db_level:None\n",
|
202 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
203 |
-
" | > base:10\n",
|
204 |
-
" | > hop_length:256\n",
|
205 |
-
" | > win_length:1024\n",
|
206 |
-
" > Model's reduction rate `r` is set to: 2\n",
|
207 |
-
" > Vocoder Model: univnet\n",
|
208 |
-
" > Setting up Audio Processor...\n",
|
209 |
-
" | > sample_rate:22050\n",
|
210 |
-
" | > resample:False\n",
|
211 |
-
" | > num_mels:80\n",
|
212 |
-
" | > log_func:np.log10\n",
|
213 |
-
" | > min_level_db:-100\n",
|
214 |
-
" | > frame_shift_ms:None\n",
|
215 |
-
" | > frame_length_ms:None\n",
|
216 |
-
" | > ref_level_db:20\n",
|
217 |
-
" | > fft_size:1024\n",
|
218 |
-
" | > power:1.5\n",
|
219 |
-
" | > preemphasis:0.0\n",
|
220 |
-
" | > griffin_lim_iters:60\n",
|
221 |
-
" | > signal_norm:True\n",
|
222 |
-
" | > symmetric_norm:True\n",
|
223 |
-
" | > mel_fmin:50.0\n",
|
224 |
-
" | > mel_fmax:7600.0\n",
|
225 |
-
" | > pitch_fmin:1.0\n",
|
226 |
-
" | > pitch_fmax:640.0\n",
|
227 |
-
" | > spec_gain:1.0\n",
|
228 |
-
" | > stft_pad_mode:reflect\n",
|
229 |
-
" | > max_norm:4.0\n",
|
230 |
-
" | > clip_norm:True\n",
|
231 |
-
" | > do_trim_silence:True\n",
|
232 |
-
" | > trim_db:60\n",
|
233 |
-
" | > do_sound_norm:False\n",
|
234 |
-
" | > do_amp_to_db_linear:True\n",
|
235 |
-
" | > do_amp_to_db_mel:True\n",
|
236 |
-
" | > do_rms_norm:False\n",
|
237 |
-
" | > db_level:None\n",
|
238 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
239 |
-
" | > base:10\n",
|
240 |
-
" | > hop_length:256\n",
|
241 |
-
" | > win_length:1024\n",
|
242 |
-
" > Generator Model: univnet_generator\n",
|
243 |
-
" > Discriminator Model: univnet_discriminator\n",
|
244 |
-
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
245 |
-
"language: \n",
|
246 |
-
"speaker: \n",
|
247 |
-
"voice cloning with the voice conversion model\n",
|
248 |
-
" > Text splitted to sentences.\n",
|
249 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
250 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
251 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
252 |
-
" > Processing time: 3.021000385284424\n",
|
253 |
-
" > Real-time factor: 0.3477544400242312\n",
|
254 |
-
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
255 |
-
"language: \n",
|
256 |
-
"speaker: \n",
|
257 |
-
"voice cloning with the voice conversion model\n",
|
258 |
-
" > Text splitted to sentences.\n",
|
259 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
260 |
-
" > Processing time: 2.9099998474121094\n",
|
261 |
-
" > Real-time factor: 0.33497690776101013\n",
|
262 |
-
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
263 |
-
"language: \n",
|
264 |
-
"speaker: \n",
|
265 |
-
"voice cloning with the voice conversion model\n",
|
266 |
-
" > Text splitted to sentences.\n",
|
267 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
268 |
-
" > Processing time: 2.933000087738037\n",
|
269 |
-
" > Real-time factor: 0.33762451937136506\n",
|
270 |
-
" > tts_models/en/ljspeech/tacotron2-DDC is already downloaded.\n",
|
271 |
-
" > Model's license - apache 2.0\n",
|
272 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
273 |
-
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
274 |
-
" > Model's license - apache 2.0\n",
|
275 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
276 |
-
" > Using model: Tacotron2\n",
|
277 |
-
" > Setting up Audio Processor...\n",
|
278 |
-
" | > sample_rate:22050\n",
|
279 |
-
" | > resample:False\n",
|
280 |
-
" | > num_mels:80\n",
|
281 |
-
" | > log_func:np.log\n",
|
282 |
-
" | > min_level_db:-100\n",
|
283 |
-
" | > frame_shift_ms:None\n",
|
284 |
-
" | > frame_length_ms:None\n",
|
285 |
-
" | > ref_level_db:20\n",
|
286 |
-
" | > fft_size:1024\n",
|
287 |
-
" | > power:1.5\n",
|
288 |
-
" | > preemphasis:0.0\n",
|
289 |
-
" | > griffin_lim_iters:60\n",
|
290 |
-
" | > signal_norm:False\n",
|
291 |
-
" | > symmetric_norm:True\n",
|
292 |
-
" | > mel_fmin:0\n",
|
293 |
-
" | > mel_fmax:8000.0\n",
|
294 |
-
" | > pitch_fmin:1.0\n",
|
295 |
-
" | > pitch_fmax:640.0\n",
|
296 |
-
" | > spec_gain:1.0\n",
|
297 |
-
" | > stft_pad_mode:reflect\n",
|
298 |
-
" | > max_norm:4.0\n",
|
299 |
-
" | > clip_norm:True\n",
|
300 |
-
" | > do_trim_silence:True\n",
|
301 |
-
" | > trim_db:60\n",
|
302 |
-
" | > do_sound_norm:False\n",
|
303 |
-
" | > do_amp_to_db_linear:True\n",
|
304 |
-
" | > do_amp_to_db_mel:True\n",
|
305 |
-
" | > do_rms_norm:False\n",
|
306 |
-
" | > db_level:None\n",
|
307 |
-
" | > stats_path:None\n",
|
308 |
-
" | > base:2.718281828459045\n",
|
309 |
-
" | > hop_length:256\n",
|
310 |
-
" | > win_length:1024\n",
|
311 |
-
" > Model's reduction rate `r` is set to: 1\n",
|
312 |
-
" > Vocoder Model: hifigan\n",
|
313 |
-
" > Setting up Audio Processor...\n",
|
314 |
-
" | > sample_rate:22050\n",
|
315 |
-
" | > resample:False\n",
|
316 |
-
" | > num_mels:80\n",
|
317 |
-
" | > log_func:np.log\n",
|
318 |
-
" | > min_level_db:-100\n",
|
319 |
-
" | > frame_shift_ms:None\n",
|
320 |
-
" | > frame_length_ms:None\n",
|
321 |
-
" | > ref_level_db:20\n",
|
322 |
-
" | > fft_size:1024\n",
|
323 |
-
" | > power:1.5\n",
|
324 |
-
" | > preemphasis:0.0\n",
|
325 |
-
" | > griffin_lim_iters:60\n",
|
326 |
-
" | > signal_norm:False\n",
|
327 |
-
" | > symmetric_norm:True\n",
|
328 |
-
" | > mel_fmin:0\n",
|
329 |
-
" | > mel_fmax:8000.0\n",
|
330 |
-
" | > pitch_fmin:1.0\n",
|
331 |
-
" | > pitch_fmax:640.0\n",
|
332 |
-
" | > spec_gain:1.0\n",
|
333 |
-
" | > stft_pad_mode:reflect\n",
|
334 |
-
" | > max_norm:4.0\n",
|
335 |
-
" | > clip_norm:True\n",
|
336 |
-
" | > do_trim_silence:False\n",
|
337 |
-
" | > trim_db:60\n",
|
338 |
-
" | > do_sound_norm:False\n",
|
339 |
-
" | > do_amp_to_db_linear:True\n",
|
340 |
-
" | > do_amp_to_db_mel:True\n",
|
341 |
-
" | > do_rms_norm:False\n",
|
342 |
-
" | > db_level:None\n",
|
343 |
-
" | > stats_path:None\n",
|
344 |
-
" | > base:2.718281828459045\n",
|
345 |
-
" | > hop_length:256\n",
|
346 |
-
" | > win_length:1024\n",
|
347 |
-
" > Generator Model: hifigan_generator\n",
|
348 |
-
" > Discriminator Model: hifigan_discriminator\n"
|
349 |
-
]
|
350 |
-
},
|
351 |
-
{
|
352 |
-
"name": "stdout",
|
353 |
-
"output_type": "stream",
|
354 |
-
"text": [
|
355 |
-
"Removing weight norm...\n",
|
356 |
-
"model: tts_models/en/ljspeech/tacotron2-DDC\n",
|
357 |
-
"language: \n",
|
358 |
-
"speaker: \n",
|
359 |
-
"voice cloning with the voice conversion model\n",
|
360 |
-
" > Text splitted to sentences.\n",
|
361 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
362 |
-
" > Processing time: 4.28600001335144\n",
|
363 |
-
" > Real-time factor: 0.42371906516498953\n",
|
364 |
-
" > tts_models/en/ek1/tacotron2 is already downloaded.\n",
|
365 |
-
" > Model's license - apache 2.0\n",
|
366 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
367 |
-
" > vocoder_models/en/ek1/wavegrad is already downloaded.\n",
|
368 |
-
" > Model's license - apache 2.0\n",
|
369 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
370 |
-
" > Using model: Tacotron2\n",
|
371 |
-
" > Setting up Audio Processor...\n",
|
372 |
-
" | > sample_rate:22050\n",
|
373 |
-
" | > resample:False\n",
|
374 |
-
" | > num_mels:80\n",
|
375 |
-
" | > log_func:np.log10\n",
|
376 |
-
" | > min_level_db:-10\n",
|
377 |
-
" | > frame_shift_ms:None\n",
|
378 |
-
" | > frame_length_ms:None\n",
|
379 |
-
" | > ref_level_db:0\n",
|
380 |
-
" | > fft_size:1024\n",
|
381 |
-
" | > power:1.8\n",
|
382 |
-
" | > preemphasis:0.99\n",
|
383 |
-
" | > griffin_lim_iters:60\n",
|
384 |
-
" | > signal_norm:True\n",
|
385 |
-
" | > symmetric_norm:True\n",
|
386 |
-
" | > mel_fmin:0\n",
|
387 |
-
" | > mel_fmax:8000.0\n",
|
388 |
-
" | > pitch_fmin:1.0\n",
|
389 |
-
" | > pitch_fmax:640.0\n",
|
390 |
-
" | > spec_gain:1.0\n",
|
391 |
-
" | > stft_pad_mode:reflect\n",
|
392 |
-
" | > max_norm:4.0\n",
|
393 |
-
" | > clip_norm:True\n",
|
394 |
-
" | > do_trim_silence:True\n",
|
395 |
-
" | > trim_db:60\n",
|
396 |
-
" | > do_sound_norm:False\n",
|
397 |
-
" | > do_amp_to_db_linear:True\n",
|
398 |
-
" | > do_amp_to_db_mel:True\n",
|
399 |
-
" | > do_rms_norm:False\n",
|
400 |
-
" | > db_level:None\n",
|
401 |
-
" | > stats_path:None\n",
|
402 |
-
" | > base:10\n",
|
403 |
-
" | > hop_length:256\n",
|
404 |
-
" | > win_length:1024\n",
|
405 |
-
" > Model's reduction rate `r` is set to: 2\n",
|
406 |
-
" > Vocoder Model: wavegrad\n",
|
407 |
-
"model: tts_models/en/ek1/tacotron2\n",
|
408 |
-
"language: \n",
|
409 |
-
"speaker: \n",
|
410 |
-
"voice cloning with the voice conversion model\n",
|
411 |
-
" > Text splitted to sentences.\n",
|
412 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
413 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
414 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
415 |
-
" > Processing time: 224.84099984169006\n",
|
416 |
-
" > Real-time factor: 29.51038122922182\n",
|
417 |
-
" > tts_models/en/ek1/tacotron2 is already downloaded.\n",
|
418 |
-
" > Model's license - apache 2.0\n",
|
419 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
420 |
-
" > vocoder_models/en/ek1/wavegrad is already downloaded.\n",
|
421 |
-
" > Model's license - apache 2.0\n",
|
422 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
423 |
-
" > Using model: Tacotron2\n",
|
424 |
-
" > Setting up Audio Processor...\n",
|
425 |
-
" | > sample_rate:22050\n",
|
426 |
-
" | > resample:False\n",
|
427 |
-
" | > num_mels:80\n",
|
428 |
-
" | > log_func:np.log10\n",
|
429 |
-
" | > min_level_db:-10\n",
|
430 |
-
" | > frame_shift_ms:None\n",
|
431 |
-
" | > frame_length_ms:None\n",
|
432 |
-
" | > ref_level_db:0\n",
|
433 |
-
" | > fft_size:1024\n",
|
434 |
-
" | > power:1.8\n",
|
435 |
-
" | > preemphasis:0.99\n",
|
436 |
-
" | > griffin_lim_iters:60\n",
|
437 |
-
" | > signal_norm:True\n",
|
438 |
-
" | > symmetric_norm:True\n",
|
439 |
-
" | > mel_fmin:0\n",
|
440 |
-
" | > mel_fmax:8000.0\n",
|
441 |
-
" | > pitch_fmin:1.0\n",
|
442 |
-
" | > pitch_fmax:640.0\n",
|
443 |
-
" | > spec_gain:1.0\n",
|
444 |
-
" | > stft_pad_mode:reflect\n",
|
445 |
-
" | > max_norm:4.0\n",
|
446 |
-
" | > clip_norm:True\n",
|
447 |
-
" | > do_trim_silence:True\n",
|
448 |
-
" | > trim_db:60\n",
|
449 |
-
" | > do_sound_norm:False\n",
|
450 |
-
" | > do_amp_to_db_linear:True\n",
|
451 |
-
" | > do_amp_to_db_mel:True\n",
|
452 |
-
" | > do_rms_norm:False\n",
|
453 |
-
" | > db_level:None\n",
|
454 |
-
" | > stats_path:None\n",
|
455 |
-
" | > base:10\n",
|
456 |
-
" | > hop_length:256\n",
|
457 |
-
" | > win_length:1024\n",
|
458 |
-
" > Model's reduction rate `r` is set to: 2\n",
|
459 |
-
" > Vocoder Model: wavegrad\n",
|
460 |
-
"model: tts_models/en/ek1/tacotron2\n",
|
461 |
-
"language: \n",
|
462 |
-
"speaker: \n",
|
463 |
-
"voice cloning with the voice conversion model\n",
|
464 |
-
" > Text splitted to sentences.\n",
|
465 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
466 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
467 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
468 |
-
" > Processing time: 266.6489999294281\n",
|
469 |
-
" > Real-time factor: 34.99768124073744\n",
|
470 |
-
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
471 |
-
" > Model's license - apache 2.0\n",
|
472 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
473 |
-
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
474 |
-
" > Model's license - apache 2.0\n",
|
475 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
476 |
-
" > Using model: Tacotron2\n",
|
477 |
-
" > Setting up Audio Processor...\n",
|
478 |
-
" | > sample_rate:22050\n",
|
479 |
-
" | > resample:False\n",
|
480 |
-
" | > num_mels:80\n",
|
481 |
-
" | > log_func:np.log10\n",
|
482 |
-
" | > min_level_db:-100\n",
|
483 |
-
" | > frame_shift_ms:None\n",
|
484 |
-
" | > frame_length_ms:None\n",
|
485 |
-
" | > ref_level_db:20\n",
|
486 |
-
" | > fft_size:1024\n",
|
487 |
-
" | > power:1.5\n",
|
488 |
-
" | > preemphasis:0.0\n",
|
489 |
-
" | > griffin_lim_iters:60\n",
|
490 |
-
" | > signal_norm:True\n",
|
491 |
-
" | > symmetric_norm:True\n",
|
492 |
-
" | > mel_fmin:50.0\n",
|
493 |
-
" | > mel_fmax:7600.0\n",
|
494 |
-
" | > pitch_fmin:0.0\n",
|
495 |
-
" | > pitch_fmax:640.0\n",
|
496 |
-
" | > spec_gain:1.0\n",
|
497 |
-
" | > stft_pad_mode:reflect\n",
|
498 |
-
" | > max_norm:4.0\n",
|
499 |
-
" | > clip_norm:True\n",
|
500 |
-
" | > do_trim_silence:True\n",
|
501 |
-
" | > trim_db:60\n",
|
502 |
-
" | > do_sound_norm:False\n",
|
503 |
-
" | > do_amp_to_db_linear:True\n",
|
504 |
-
" | > do_amp_to_db_mel:True\n",
|
505 |
-
" | > do_rms_norm:False\n",
|
506 |
-
" | > db_level:None\n",
|
507 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
508 |
-
" | > base:10\n",
|
509 |
-
" | > hop_length:256\n",
|
510 |
-
" | > win_length:1024\n",
|
511 |
-
" > Model's reduction rate `r` is set to: 2\n",
|
512 |
-
" > Vocoder Model: univnet\n",
|
513 |
-
" > Setting up Audio Processor...\n",
|
514 |
-
" | > sample_rate:22050\n",
|
515 |
-
" | > resample:False\n",
|
516 |
-
" | > num_mels:80\n",
|
517 |
-
" | > log_func:np.log10\n",
|
518 |
-
" | > min_level_db:-100\n",
|
519 |
-
" | > frame_shift_ms:None\n",
|
520 |
-
" | > frame_length_ms:None\n",
|
521 |
-
" | > ref_level_db:20\n",
|
522 |
-
" | > fft_size:1024\n",
|
523 |
-
" | > power:1.5\n",
|
524 |
-
" | > preemphasis:0.0\n",
|
525 |
-
" | > griffin_lim_iters:60\n",
|
526 |
-
" | > signal_norm:True\n",
|
527 |
-
" | > symmetric_norm:True\n",
|
528 |
-
" | > mel_fmin:50.0\n",
|
529 |
-
" | > mel_fmax:7600.0\n",
|
530 |
-
" | > pitch_fmin:1.0\n",
|
531 |
-
" | > pitch_fmax:640.0\n",
|
532 |
-
" | > spec_gain:1.0\n",
|
533 |
-
" | > stft_pad_mode:reflect\n",
|
534 |
-
" | > max_norm:4.0\n",
|
535 |
-
" | > clip_norm:True\n",
|
536 |
-
" | > do_trim_silence:True\n",
|
537 |
-
" | > trim_db:60\n",
|
538 |
-
" | > do_sound_norm:False\n",
|
539 |
-
" | > do_amp_to_db_linear:True\n",
|
540 |
-
" | > do_amp_to_db_mel:True\n",
|
541 |
-
" | > do_rms_norm:False\n",
|
542 |
-
" | > db_level:None\n",
|
543 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
544 |
-
" | > base:10\n",
|
545 |
-
" | > hop_length:256\n",
|
546 |
-
" | > win_length:1024\n",
|
547 |
-
" > Generator Model: univnet_generator\n",
|
548 |
-
" > Discriminator Model: univnet_discriminator\n",
|
549 |
-
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
550 |
-
"language: \n",
|
551 |
-
"speaker: \n",
|
552 |
-
"voice cloning with the voice conversion model\n",
|
553 |
-
" > Text splitted to sentences.\n",
|
554 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
555 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
556 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
557 |
-
" > Processing time: 2.885999917984009\n",
|
558 |
-
" > Real-time factor: 0.3322142195933605\n",
|
559 |
-
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--speedy-speech\n",
|
560 |
-
" > Model's license - apache 2.0\n",
|
561 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
562 |
-
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
563 |
-
" > Model's license - apache 2.0\n",
|
564 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
565 |
-
" > Using model: speedy_speech\n",
|
566 |
-
" > Setting up Audio Processor...\n",
|
567 |
-
" | > sample_rate:22050\n",
|
568 |
-
" | > resample:False\n",
|
569 |
-
" | > num_mels:80\n",
|
570 |
-
" | > log_func:np.log\n",
|
571 |
-
" | > min_level_db:-100\n",
|
572 |
-
" | > frame_shift_ms:None\n",
|
573 |
-
" | > frame_length_ms:None\n",
|
574 |
-
" | > ref_level_db:20\n",
|
575 |
-
" | > fft_size:1024\n",
|
576 |
-
" | > power:1.5\n",
|
577 |
-
" | > preemphasis:0.0\n",
|
578 |
-
" | > griffin_lim_iters:60\n",
|
579 |
-
" | > signal_norm:False\n",
|
580 |
-
" | > symmetric_norm:True\n",
|
581 |
-
" | > mel_fmin:0\n",
|
582 |
-
" | > mel_fmax:8000.0\n",
|
583 |
-
" | > pitch_fmin:1.0\n",
|
584 |
-
" | > pitch_fmax:640.0\n",
|
585 |
-
" | > spec_gain:1.0\n",
|
586 |
-
" | > stft_pad_mode:reflect\n",
|
587 |
-
" | > max_norm:4.0\n",
|
588 |
-
" | > clip_norm:True\n",
|
589 |
-
" | > do_trim_silence:True\n",
|
590 |
-
" | > trim_db:60\n",
|
591 |
-
" | > do_sound_norm:False\n",
|
592 |
-
" | > do_amp_to_db_linear:True\n",
|
593 |
-
" | > do_amp_to_db_mel:True\n",
|
594 |
-
" | > do_rms_norm:False\n",
|
595 |
-
" | > db_level:None\n",
|
596 |
-
" | > stats_path:None\n",
|
597 |
-
" | > base:2.718281828459045\n",
|
598 |
-
" | > hop_length:256\n",
|
599 |
-
" | > win_length:1024\n",
|
600 |
-
" > Vocoder Model: hifigan\n",
|
601 |
-
" > Setting up Audio Processor...\n",
|
602 |
-
" | > sample_rate:22050\n",
|
603 |
-
" | > resample:False\n",
|
604 |
-
" | > num_mels:80\n",
|
605 |
-
" | > log_func:np.log\n",
|
606 |
-
" | > min_level_db:-100\n",
|
607 |
-
" | > frame_shift_ms:None\n",
|
608 |
-
" | > frame_length_ms:None\n",
|
609 |
-
" | > ref_level_db:20\n",
|
610 |
-
" | > fft_size:1024\n",
|
611 |
-
" | > power:1.5\n",
|
612 |
-
" | > preemphasis:0.0\n",
|
613 |
-
" | > griffin_lim_iters:60\n",
|
614 |
-
" | > signal_norm:False\n",
|
615 |
-
" | > symmetric_norm:True\n",
|
616 |
-
" | > mel_fmin:0\n",
|
617 |
-
" | > mel_fmax:8000.0\n",
|
618 |
-
" | > pitch_fmin:1.0\n",
|
619 |
-
" | > pitch_fmax:640.0\n",
|
620 |
-
" | > spec_gain:1.0\n",
|
621 |
-
" | > stft_pad_mode:reflect\n",
|
622 |
-
" | > max_norm:4.0\n",
|
623 |
-
" | > clip_norm:True\n",
|
624 |
-
" | > do_trim_silence:False\n",
|
625 |
-
" | > trim_db:60\n",
|
626 |
-
" | > do_sound_norm:False\n",
|
627 |
-
" | > do_amp_to_db_linear:True\n",
|
628 |
-
" | > do_amp_to_db_mel:True\n",
|
629 |
-
" | > do_rms_norm:False\n",
|
630 |
-
" | > db_level:None\n",
|
631 |
-
" | > stats_path:None\n",
|
632 |
-
" | > base:2.718281828459045\n",
|
633 |
-
" | > hop_length:256\n",
|
634 |
-
" | > win_length:1024\n",
|
635 |
-
" > Generator Model: hifigan_generator\n",
|
636 |
-
" > Discriminator Model: hifigan_discriminator\n",
|
637 |
-
"Removing weight norm...\n"
|
638 |
-
]
|
639 |
-
},
|
640 |
-
{
|
641 |
-
"name": "stdout",
|
642 |
-
"output_type": "stream",
|
643 |
-
"text": [
|
644 |
-
"model: tts_models/en/ljspeech/speedy-speech\n",
|
645 |
-
"language: \n",
|
646 |
-
"speaker: \n",
|
647 |
-
"Using original voice\n",
|
648 |
-
" > Text splitted to sentences.\n",
|
649 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
650 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
651 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
652 |
-
" > Processing time: 0.9679999351501465\n",
|
653 |
-
" > Real-time factor: 0.11673301633083617\n",
|
654 |
-
"model: tts_models/en/ljspeech/speedy-speech\n",
|
655 |
-
"language: \n",
|
656 |
-
"speaker: \n",
|
657 |
-
"voice cloning with the voice conversion model\n",
|
658 |
-
" > Text splitted to sentences.\n",
|
659 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
660 |
-
" > Processing time: 0.9630000591278076\n",
|
661 |
-
" > Real-time factor: 0.11613007144605443\n",
|
662 |
-
" > tts_models/en/ljspeech/tacotron2-DCA is already downloaded.\n",
|
663 |
-
" > Model's license - MPL\n",
|
664 |
-
" > Check https://www.mozilla.org/en-US/MPL/2.0/ for more info.\n",
|
665 |
-
" > vocoder_models/en/ljspeech/multiband-melgan is already downloaded.\n",
|
666 |
-
" > Model's license - MPL\n",
|
667 |
-
" > Check https://www.mozilla.org/en-US/MPL/2.0/ for more info.\n",
|
668 |
-
" > Using model: Tacotron2\n",
|
669 |
-
" > Setting up Audio Processor...\n",
|
670 |
-
" | > sample_rate:22050\n",
|
671 |
-
" | > resample:False\n",
|
672 |
-
" | > num_mels:80\n",
|
673 |
-
" | > log_func:np.log10\n",
|
674 |
-
" | > min_level_db:-100\n",
|
675 |
-
" | > frame_shift_ms:None\n",
|
676 |
-
" | > frame_length_ms:None\n",
|
677 |
-
" | > ref_level_db:20\n",
|
678 |
-
" | > fft_size:1024\n",
|
679 |
-
" | > power:1.5\n",
|
680 |
-
" | > preemphasis:0.0\n",
|
681 |
-
" | > griffin_lim_iters:60\n",
|
682 |
-
" | > signal_norm:True\n",
|
683 |
-
" | > symmetric_norm:True\n",
|
684 |
-
" | > mel_fmin:50.0\n",
|
685 |
-
" | > mel_fmax:7600.0\n",
|
686 |
-
" | > pitch_fmin:0.0\n",
|
687 |
-
" | > pitch_fmax:640.0\n",
|
688 |
-
" | > spec_gain:1.0\n",
|
689 |
-
" | > stft_pad_mode:reflect\n",
|
690 |
-
" | > max_norm:4.0\n",
|
691 |
-
" | > clip_norm:True\n",
|
692 |
-
" | > do_trim_silence:True\n",
|
693 |
-
" | > trim_db:60\n",
|
694 |
-
" | > do_sound_norm:False\n",
|
695 |
-
" | > do_amp_to_db_linear:True\n",
|
696 |
-
" | > do_amp_to_db_mel:True\n",
|
697 |
-
" | > do_rms_norm:False\n",
|
698 |
-
" | > db_level:None\n",
|
699 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DCA\\scale_stats.npy\n",
|
700 |
-
" | > base:10\n",
|
701 |
-
" | > hop_length:256\n",
|
702 |
-
" | > win_length:1024\n",
|
703 |
-
" > Model's reduction rate `r` is set to: 2\n",
|
704 |
-
" > Vocoder Model: multiband_melgan\n",
|
705 |
-
" > Setting up Audio Processor...\n",
|
706 |
-
" | > sample_rate:22050\n",
|
707 |
-
" | > resample:False\n",
|
708 |
-
" | > num_mels:80\n",
|
709 |
-
" | > log_func:np.log10\n",
|
710 |
-
" | > min_level_db:-100\n",
|
711 |
-
" | > frame_shift_ms:None\n",
|
712 |
-
" | > frame_length_ms:None\n",
|
713 |
-
" | > ref_level_db:0\n",
|
714 |
-
" | > fft_size:1024\n",
|
715 |
-
" | > power:1.5\n",
|
716 |
-
" | > preemphasis:0.0\n",
|
717 |
-
" | > griffin_lim_iters:60\n",
|
718 |
-
" | > signal_norm:True\n",
|
719 |
-
" | > symmetric_norm:True\n",
|
720 |
-
" | > mel_fmin:50.0\n",
|
721 |
-
" | > mel_fmax:7600.0\n",
|
722 |
-
" | > pitch_fmin:0.0\n",
|
723 |
-
" | > pitch_fmax:640.0\n",
|
724 |
-
" | > spec_gain:1.0\n",
|
725 |
-
" | > stft_pad_mode:reflect\n",
|
726 |
-
" | > max_norm:4.0\n",
|
727 |
-
" | > clip_norm:True\n",
|
728 |
-
" | > do_trim_silence:True\n",
|
729 |
-
" | > trim_db:60\n",
|
730 |
-
" | > do_sound_norm:False\n",
|
731 |
-
" | > do_amp_to_db_linear:True\n",
|
732 |
-
" | > do_amp_to_db_mel:True\n",
|
733 |
-
" | > do_rms_norm:False\n",
|
734 |
-
" | > db_level:None\n",
|
735 |
-
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--multiband-melgan\\scale_stats.npy\n",
|
736 |
-
" | > base:10\n",
|
737 |
-
" | > hop_length:256\n",
|
738 |
-
" | > win_length:1024\n",
|
739 |
-
" > Generator Model: multiband_melgan_generator\n",
|
740 |
-
" > Discriminator Model: melgan_multiscale_discriminator\n",
|
741 |
-
"model: tts_models/en/ljspeech/tacotron2-DCA\n",
|
742 |
-
"language: \n",
|
743 |
-
"speaker: \n",
|
744 |
-
"Using original voice\n",
|
745 |
-
" > Text splitted to sentences.\n",
|
746 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
747 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
748 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
749 |
-
" > Processing time: 2.067000150680542\n",
|
750 |
-
" > Real-time factor: 0.23295588670728015\n",
|
751 |
-
"model: tts_models/en/ljspeech/tacotron2-DCA\n",
|
752 |
-
"language: \n",
|
753 |
-
"speaker: \n",
|
754 |
-
"voice cloning with the voice conversion model\n",
|
755 |
-
" > Text splitted to sentences.\n",
|
756 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
757 |
-
" > Processing time: 2.1570000648498535\n",
|
758 |
-
" > Real-time factor: 0.2430990934225715\n",
|
759 |
-
"model: tts_models/en/ljspeech/tacotron2-DCA\n",
|
760 |
-
"language: \n",
|
761 |
-
"speaker: \n",
|
762 |
-
"voice cloning with the voice conversion model\n",
|
763 |
-
" > Text splitted to sentences.\n",
|
764 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
765 |
-
" > Processing time: 2.0920000076293945\n",
|
766 |
-
" > Real-time factor: 0.23577343069302087\n",
|
767 |
-
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--fast_pitch\n",
|
768 |
-
" > Model's license - apache 2.0\n",
|
769 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
770 |
-
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
771 |
-
" > Model's license - apache 2.0\n",
|
772 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
773 |
-
" > Using model: fast_pitch\n",
|
774 |
-
" > Setting up Audio Processor...\n",
|
775 |
-
" | > sample_rate:22050\n",
|
776 |
-
" | > resample:False\n",
|
777 |
-
" | > num_mels:80\n",
|
778 |
-
" | > log_func:np.log\n",
|
779 |
-
" | > min_level_db:-100\n",
|
780 |
-
" | > frame_shift_ms:None\n",
|
781 |
-
" | > frame_length_ms:None\n",
|
782 |
-
" | > ref_level_db:20\n",
|
783 |
-
" | > fft_size:1024\n",
|
784 |
-
" | > power:1.5\n",
|
785 |
-
" | > preemphasis:0.0\n",
|
786 |
-
" | > griffin_lim_iters:60\n",
|
787 |
-
" | > signal_norm:False\n",
|
788 |
-
" | > symmetric_norm:True\n",
|
789 |
-
" | > mel_fmin:0\n",
|
790 |
-
" | > mel_fmax:8000.0\n",
|
791 |
-
" | > pitch_fmin:1.0\n",
|
792 |
-
" | > pitch_fmax:640.0\n",
|
793 |
-
" | > spec_gain:1.0\n",
|
794 |
-
" | > stft_pad_mode:reflect\n",
|
795 |
-
" | > max_norm:4.0\n",
|
796 |
-
" | > clip_norm:True\n",
|
797 |
-
" | > do_trim_silence:True\n",
|
798 |
-
" | > trim_db:60\n",
|
799 |
-
" | > do_sound_norm:False\n",
|
800 |
-
" | > do_amp_to_db_linear:True\n",
|
801 |
-
" | > do_amp_to_db_mel:True\n",
|
802 |
-
" | > do_rms_norm:False\n",
|
803 |
-
" | > db_level:None\n",
|
804 |
-
" | > stats_path:None\n",
|
805 |
-
" | > base:2.718281828459045\n",
|
806 |
-
" | > hop_length:256\n",
|
807 |
-
" | > win_length:1024\n",
|
808 |
-
" > Vocoder Model: hifigan\n",
|
809 |
-
" > Setting up Audio Processor...\n",
|
810 |
-
" | > sample_rate:22050\n",
|
811 |
-
" | > resample:False\n",
|
812 |
-
" | > num_mels:80\n",
|
813 |
-
" | > log_func:np.log\n",
|
814 |
-
" | > min_level_db:-100\n",
|
815 |
-
" | > frame_shift_ms:None\n",
|
816 |
-
" | > frame_length_ms:None\n",
|
817 |
-
" | > ref_level_db:20\n",
|
818 |
-
" | > fft_size:1024\n",
|
819 |
-
" | > power:1.5\n",
|
820 |
-
" | > preemphasis:0.0\n",
|
821 |
-
" | > griffin_lim_iters:60\n",
|
822 |
-
" | > signal_norm:False\n",
|
823 |
-
" | > symmetric_norm:True\n",
|
824 |
-
" | > mel_fmin:0\n",
|
825 |
-
" | > mel_fmax:8000.0\n",
|
826 |
-
" | > pitch_fmin:1.0\n",
|
827 |
-
" | > pitch_fmax:640.0\n",
|
828 |
-
" | > spec_gain:1.0\n",
|
829 |
-
" | > stft_pad_mode:reflect\n",
|
830 |
-
" | > max_norm:4.0\n",
|
831 |
-
" | > clip_norm:True\n",
|
832 |
-
" | > do_trim_silence:False\n",
|
833 |
-
" | > trim_db:60\n",
|
834 |
-
" | > do_sound_norm:False\n",
|
835 |
-
" | > do_amp_to_db_linear:True\n",
|
836 |
-
" | > do_amp_to_db_mel:True\n",
|
837 |
-
" | > do_rms_norm:False\n",
|
838 |
-
" | > db_level:None\n",
|
839 |
-
" | > stats_path:None\n",
|
840 |
-
" | > base:2.718281828459045\n",
|
841 |
-
" | > hop_length:256\n",
|
842 |
-
" | > win_length:1024\n",
|
843 |
-
" > Generator Model: hifigan_generator\n",
|
844 |
-
" > Discriminator Model: hifigan_discriminator\n",
|
845 |
-
"Removing weight norm...\n",
|
846 |
-
"model: tts_models/en/ljspeech/fast_pitch\n",
|
847 |
-
"language: \n",
|
848 |
-
"speaker: \n",
|
849 |
-
"Using original voice\n",
|
850 |
-
" > Text splitted to sentences.\n",
|
851 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
852 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
853 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
854 |
-
" > Processing time: 1.8829996585845947\n",
|
855 |
-
" > Real-time factor: 0.19894272496832988\n",
|
856 |
-
"model: tts_models/en/ljspeech/fast_pitch\n",
|
857 |
-
"language: \n",
|
858 |
-
"speaker: \n",
|
859 |
-
"voice cloning with the voice conversion model\n",
|
860 |
-
" > Text splitted to sentences.\n",
|
861 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
862 |
-
" > Processing time: 1.8359999656677246\n",
|
863 |
-
" > Real-time factor: 0.19397711228808903\n",
|
864 |
-
"model: tts_models/en/ljspeech/fast_pitch\n",
|
865 |
-
"language: \n",
|
866 |
-
"speaker: \n",
|
867 |
-
"voice cloning with the voice conversion model\n",
|
868 |
-
" > Text splitted to sentences.\n",
|
869 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
870 |
-
" > Processing time: 1.8659999370574951\n",
|
871 |
-
" > Real-time factor: 0.19714666998293168\n",
|
872 |
-
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
873 |
-
"source_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\b6e9c24083a878478ebbecd7bc42e1f631c05df6\\henry5-0-100.wav\n",
|
874 |
-
"target_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\11c82c70d145ea630f81dfa541de52bf615719ae\\yearn_for_time-0-100.wav\n",
|
875 |
-
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--overflow\n",
|
876 |
-
" > Model's license - apache 2.0\n",
|
877 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
878 |
-
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
879 |
-
" > Model's license - apache 2.0\n",
|
880 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
881 |
-
" > Using model: OverFlow\n",
|
882 |
-
" > Setting up Audio Processor...\n",
|
883 |
-
" | > sample_rate:22050\n",
|
884 |
-
" | > resample:False\n",
|
885 |
-
" | > num_mels:80\n",
|
886 |
-
" | > log_func:np.log\n",
|
887 |
-
" | > min_level_db:-100\n",
|
888 |
-
" | > frame_shift_ms:None\n",
|
889 |
-
" | > frame_length_ms:None\n",
|
890 |
-
" | > ref_level_db:20\n",
|
891 |
-
" | > fft_size:1024\n",
|
892 |
-
" | > power:1.5\n",
|
893 |
-
" | > preemphasis:0.0\n",
|
894 |
-
" | > griffin_lim_iters:60\n",
|
895 |
-
" | > signal_norm:False\n",
|
896 |
-
" | > symmetric_norm:True\n",
|
897 |
-
" | > mel_fmin:0\n",
|
898 |
-
" | > mel_fmax:8000.0\n",
|
899 |
-
" | > pitch_fmin:1.0\n",
|
900 |
-
" | > pitch_fmax:640.0\n",
|
901 |
-
" | > spec_gain:1.0\n",
|
902 |
-
" | > stft_pad_mode:reflect\n",
|
903 |
-
" | > max_norm:4.0\n",
|
904 |
-
" | > clip_norm:True\n",
|
905 |
-
" | > do_trim_silence:True\n",
|
906 |
-
" | > trim_db:60\n",
|
907 |
-
" | > do_sound_norm:False\n",
|
908 |
-
" | > do_amp_to_db_linear:True\n",
|
909 |
-
" | > do_amp_to_db_mel:True\n",
|
910 |
-
" | > do_rms_norm:False\n",
|
911 |
-
" | > db_level:None\n",
|
912 |
-
" | > stats_path:None\n",
|
913 |
-
" | > base:2.718281828459045\n",
|
914 |
-
" | > hop_length:256\n",
|
915 |
-
" | > win_length:1024\n"
|
916 |
-
]
|
917 |
-
},
|
918 |
-
{
|
919 |
-
"name": "stdout",
|
920 |
-
"output_type": "stream",
|
921 |
-
"text": [
|
922 |
-
" > Vocoder Model: hifigan\n",
|
923 |
-
" > Setting up Audio Processor...\n",
|
924 |
-
" | > sample_rate:22050\n",
|
925 |
-
" | > resample:False\n",
|
926 |
-
" | > num_mels:80\n",
|
927 |
-
" | > log_func:np.log\n",
|
928 |
-
" | > min_level_db:-100\n",
|
929 |
-
" | > frame_shift_ms:None\n",
|
930 |
-
" | > frame_length_ms:None\n",
|
931 |
-
" | > ref_level_db:20\n",
|
932 |
-
" | > fft_size:1024\n",
|
933 |
-
" | > power:1.5\n",
|
934 |
-
" | > preemphasis:0.0\n",
|
935 |
-
" | > griffin_lim_iters:60\n",
|
936 |
-
" | > signal_norm:False\n",
|
937 |
-
" | > symmetric_norm:True\n",
|
938 |
-
" | > mel_fmin:0\n",
|
939 |
-
" | > mel_fmax:8000.0\n",
|
940 |
-
" | > pitch_fmin:1.0\n",
|
941 |
-
" | > pitch_fmax:640.0\n",
|
942 |
-
" | > spec_gain:1.0\n",
|
943 |
-
" | > stft_pad_mode:reflect\n",
|
944 |
-
" | > max_norm:4.0\n",
|
945 |
-
" | > clip_norm:True\n",
|
946 |
-
" | > do_trim_silence:False\n",
|
947 |
-
" | > trim_db:60\n",
|
948 |
-
" | > do_sound_norm:False\n",
|
949 |
-
" | > do_amp_to_db_linear:True\n",
|
950 |
-
" | > do_amp_to_db_mel:True\n",
|
951 |
-
" | > do_rms_norm:False\n",
|
952 |
-
" | > db_level:None\n",
|
953 |
-
" | > stats_path:None\n",
|
954 |
-
" | > base:2.718281828459045\n",
|
955 |
-
" | > hop_length:256\n",
|
956 |
-
" | > win_length:1024\n",
|
957 |
-
" > Generator Model: hifigan_generator\n",
|
958 |
-
" > Discriminator Model: hifigan_discriminator\n",
|
959 |
-
"Removing weight norm...\n",
|
960 |
-
"model: tts_models/en/ljspeech/overflow\n",
|
961 |
-
"language: \n",
|
962 |
-
"speaker: \n",
|
963 |
-
"Using original voice\n",
|
964 |
-
" > Text splitted to sentences.\n",
|
965 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
966 |
-
" > Processing time: 2.4030001163482666\n",
|
967 |
-
" > Real-time factor: 0.26459208495864933\n",
|
968 |
-
"model: tts_models/en/ljspeech/overflow\n",
|
969 |
-
"language: \n",
|
970 |
-
"speaker: \n",
|
971 |
-
"voice cloning with the voice conversion model\n",
|
972 |
-
" > Text splitted to sentences.\n",
|
973 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
974 |
-
" > Processing time: 2.4769999980926514\n",
|
975 |
-
" > Real-time factor: 0.27343925203231617\n",
|
976 |
-
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--neural_hmm\n",
|
977 |
-
" > Model's license - apache 2.0\n",
|
978 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
979 |
-
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
980 |
-
" > Model's license - apache 2.0\n",
|
981 |
-
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
982 |
-
" > Using model: NeuralHMM_TTS\n",
|
983 |
-
" > Setting up Audio Processor...\n",
|
984 |
-
" | > sample_rate:22050\n",
|
985 |
-
" | > resample:False\n",
|
986 |
-
" | > num_mels:80\n",
|
987 |
-
" | > log_func:np.log\n",
|
988 |
-
" | > min_level_db:-100\n",
|
989 |
-
" | > frame_shift_ms:None\n",
|
990 |
-
" | > frame_length_ms:None\n",
|
991 |
-
" | > ref_level_db:20\n",
|
992 |
-
" | > fft_size:1024\n",
|
993 |
-
" | > power:1.5\n",
|
994 |
-
" | > preemphasis:0.0\n",
|
995 |
-
" | > griffin_lim_iters:60\n",
|
996 |
-
" | > signal_norm:False\n",
|
997 |
-
" | > symmetric_norm:True\n",
|
998 |
-
" | > mel_fmin:0\n",
|
999 |
-
" | > mel_fmax:8000.0\n",
|
1000 |
-
" | > pitch_fmin:1.0\n",
|
1001 |
-
" | > pitch_fmax:640.0\n",
|
1002 |
-
" | > spec_gain:1.0\n",
|
1003 |
-
" | > stft_pad_mode:reflect\n",
|
1004 |
-
" | > max_norm:4.0\n",
|
1005 |
-
" | > clip_norm:True\n",
|
1006 |
-
" | > do_trim_silence:True\n",
|
1007 |
-
" | > trim_db:60\n",
|
1008 |
-
" | > do_sound_norm:False\n",
|
1009 |
-
" | > do_amp_to_db_linear:True\n",
|
1010 |
-
" | > do_amp_to_db_mel:True\n",
|
1011 |
-
" | > do_rms_norm:False\n",
|
1012 |
-
" | > db_level:None\n",
|
1013 |
-
" | > stats_path:None\n",
|
1014 |
-
" | > base:2.718281828459045\n",
|
1015 |
-
" | > hop_length:256\n",
|
1016 |
-
" | > win_length:1024\n",
|
1017 |
-
" > Vocoder Model: hifigan\n",
|
1018 |
-
" > Setting up Audio Processor...\n",
|
1019 |
-
" | > sample_rate:22050\n",
|
1020 |
-
" | > resample:False\n",
|
1021 |
-
" | > num_mels:80\n",
|
1022 |
-
" | > log_func:np.log\n",
|
1023 |
-
" | > min_level_db:-100\n",
|
1024 |
-
" | > frame_shift_ms:None\n",
|
1025 |
-
" | > frame_length_ms:None\n",
|
1026 |
-
" | > ref_level_db:20\n",
|
1027 |
-
" | > fft_size:1024\n",
|
1028 |
-
" | > power:1.5\n",
|
1029 |
-
" | > preemphasis:0.0\n",
|
1030 |
-
" | > griffin_lim_iters:60\n",
|
1031 |
-
" | > signal_norm:False\n",
|
1032 |
-
" | > symmetric_norm:True\n",
|
1033 |
-
" | > mel_fmin:0\n",
|
1034 |
-
" | > mel_fmax:8000.0\n",
|
1035 |
-
" | > pitch_fmin:1.0\n",
|
1036 |
-
" | > pitch_fmax:640.0\n",
|
1037 |
-
" | > spec_gain:1.0\n",
|
1038 |
-
" | > stft_pad_mode:reflect\n",
|
1039 |
-
" | > max_norm:4.0\n",
|
1040 |
-
" | > clip_norm:True\n",
|
1041 |
-
" | > do_trim_silence:False\n",
|
1042 |
-
" | > trim_db:60\n",
|
1043 |
-
" | > do_sound_norm:False\n",
|
1044 |
-
" | > do_amp_to_db_linear:True\n",
|
1045 |
-
" | > do_amp_to_db_mel:True\n",
|
1046 |
-
" | > do_rms_norm:False\n",
|
1047 |
-
" | > db_level:None\n",
|
1048 |
-
" | > stats_path:None\n",
|
1049 |
-
" | > base:2.718281828459045\n",
|
1050 |
-
" | > hop_length:256\n",
|
1051 |
-
" | > win_length:1024\n",
|
1052 |
-
" > Generator Model: hifigan_generator\n",
|
1053 |
-
" > Discriminator Model: hifigan_discriminator\n",
|
1054 |
-
"Removing weight norm...\n",
|
1055 |
-
"model: tts_models/en/ljspeech/neural_hmm\n",
|
1056 |
-
"language: \n",
|
1057 |
-
"speaker: \n",
|
1058 |
-
"Using original voice\n",
|
1059 |
-
" > Text splitted to sentences.\n",
|
1060 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
1061 |
-
" > Processing time: 2.3940000534057617\n",
|
1062 |
-
" > Real-time factor: 0.27230367477713896\n",
|
1063 |
-
"model: tts_models/en/ljspeech/neural_hmm\n",
|
1064 |
-
"language: \n",
|
1065 |
-
"speaker: \n",
|
1066 |
-
"voice cloning with the voice conversion model\n",
|
1067 |
-
" > Text splitted to sentences.\n",
|
1068 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
1069 |
-
" > Processing time: 2.628000020980835\n",
|
1070 |
-
" > Real-time factor: 0.2965699745262212\n",
|
1071 |
-
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--vctk--fast_pitch\n",
|
1072 |
-
" > Model's license - CC BY-NC-ND 4.0\n",
|
1073 |
-
" > Check https://creativecommons.org/licenses/by-nc-nd/4.0/ for more info.\n",
|
1074 |
-
" > Using model: fast_pitch\n",
|
1075 |
-
" > Setting up Audio Processor...\n",
|
1076 |
-
" | > sample_rate:22050\n",
|
1077 |
-
" | > resample:False\n",
|
1078 |
-
" | > num_mels:80\n",
|
1079 |
-
" | > log_func:np.log\n",
|
1080 |
-
" | > min_level_db:-100\n",
|
1081 |
-
" | > frame_shift_ms:None\n",
|
1082 |
-
" | > frame_length_ms:None\n",
|
1083 |
-
" | > ref_level_db:20\n",
|
1084 |
-
" | > fft_size:1024\n",
|
1085 |
-
" | > power:1.5\n",
|
1086 |
-
" | > preemphasis:0.0\n",
|
1087 |
-
" | > griffin_lim_iters:60\n",
|
1088 |
-
" | > signal_norm:False\n",
|
1089 |
-
" | > symmetric_norm:True\n",
|
1090 |
-
" | > mel_fmin:0\n",
|
1091 |
-
" | > mel_fmax:8000.0\n",
|
1092 |
-
" | > pitch_fmin:0.0\n",
|
1093 |
-
" | > pitch_fmax:640.0\n",
|
1094 |
-
" | > spec_gain:1.0\n",
|
1095 |
-
" | > stft_pad_mode:reflect\n",
|
1096 |
-
" | > max_norm:4.0\n",
|
1097 |
-
" | > clip_norm:True\n",
|
1098 |
-
" | > do_trim_silence:True\n",
|
1099 |
-
" | > trim_db:23\n",
|
1100 |
-
" | > do_sound_norm:False\n",
|
1101 |
-
" | > do_amp_to_db_linear:True\n",
|
1102 |
-
" | > do_amp_to_db_mel:True\n",
|
1103 |
-
" | > do_rms_norm:False\n",
|
1104 |
-
" | > db_level:None\n",
|
1105 |
-
" | > stats_path:None\n",
|
1106 |
-
" | > base:2.718281828459045\n",
|
1107 |
-
" | > hop_length:256\n",
|
1108 |
-
" | > win_length:1024\n",
|
1109 |
-
" > Init speaker_embedding layer.\n",
|
1110 |
-
"model: tts_models/en/vctk/fast_pitch\n",
|
1111 |
-
"language: \n",
|
1112 |
-
"speaker: VCTK_p225\n",
|
1113 |
-
"Using original voice\n",
|
1114 |
-
" > Text splitted to sentences.\n",
|
1115 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
1116 |
-
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
1117 |
-
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
1118 |
-
" > Processing time: 4.122999906539917\n",
|
1119 |
-
" > Real-time factor: 0.6120216766695737\n",
|
1120 |
-
"model: tts_models/en/vctk/fast_pitch\n",
|
1121 |
-
"language: \n",
|
1122 |
-
"speaker: VCTK_p227\n",
|
1123 |
-
"Using original voice\n",
|
1124 |
-
" > Text splitted to sentences.\n",
|
1125 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
1126 |
-
" > Processing time: 3.615000009536743\n",
|
1127 |
-
" > Real-time factor: 0.5239715910962163\n",
|
1128 |
-
"model: tts_models/en/vctk/fast_pitch\n",
|
1129 |
-
"language: \n",
|
1130 |
-
"speaker: VCTK_p227\n",
|
1131 |
-
"voice cloning with the tts\n",
|
1132 |
-
" > Text splitted to sentences.\n",
|
1133 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n"
|
1134 |
]
|
1135 |
},
|
1136 |
{
|
@@ -1150,17 +92,19 @@
|
|
1150 |
" return await future\n",
|
1151 |
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 807, in run\n",
|
1152 |
" result = context.run(func, *args)\n",
|
1153 |
-
" File \"<ipython-input-
|
1154 |
-
"
|
1155 |
-
" File \"
|
1156 |
-
"
|
1157 |
-
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\
|
1158 |
-
"
|
1159 |
-
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\
|
1160 |
-
"
|
1161 |
-
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\
|
1162 |
-
"
|
1163 |
-
"
|
|
|
|
|
1164 |
]
|
1165 |
}
|
1166 |
],
|
@@ -1169,16 +113,40 @@
|
|
1169 |
"description = \"\"\"\"\"\"\n",
|
1170 |
"article = \"\"\"\"\"\"\n",
|
1171 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1172 |
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
1173 |
"GPU = device == \"cuda\"\n",
|
1174 |
"INT16MAX = np.iinfo(np.int16).max\n",
|
1175 |
-
"
|
|
|
1176 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1177 |
"\n",
|
1178 |
-
"model_ids = ModelManager(verbose=False).list_models()\n",
|
1179 |
-
"model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
1180 |
-
"model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
1181 |
-
"model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
1182 |
"examples_pt = 'examples'\n",
|
1183 |
"allowed_extentions = ['.mp3', '.wav']\n",
|
1184 |
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
@@ -1189,7 +157,7 @@
|
|
1189 |
"\n",
|
1190 |
"\n",
|
1191 |
"def on_model_tts_select(model_name):\n",
|
1192 |
-
" tts_var =
|
1193 |
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
1194 |
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
1195 |
" language = languages[0]\n",
|
@@ -1237,6 +205,7 @@
|
|
1237 |
" # Lazy code... save it to a temp file to resample it while reading it for VC\n",
|
1238 |
" tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)\n",
|
1239 |
" speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)\n",
|
|
|
1240 |
" \n",
|
1241 |
"\n",
|
1242 |
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
@@ -1301,6 +270,193 @@
|
|
1301 |
" gr.HTML(article)\n",
|
1302 |
"demo.launch(share=False)"
|
1303 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1304 |
}
|
1305 |
],
|
1306 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 41,
|
6 |
+
"id": "9a1c46ff",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
|
|
15 |
"import tempfile\n",
|
16 |
"\n",
|
17 |
"from TTS.api import TTS\n",
|
18 |
+
"from TTS.utils.manage import ModelManager\n",
|
19 |
+
"from TTS.utils.synthesizer import Synthesizer"
|
20 |
]
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 76,
|
25 |
+
"id": "a6339716",
|
26 |
"metadata": {
|
27 |
"scrolled": false
|
28 |
},
|
|
|
36 |
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
37 |
" > Using model: freevc\n",
|
38 |
" > Loading pretrained speaker encoder model ...\n",
|
39 |
+
"Loaded the voice encoder model on cpu in 0.02 seconds.\n",
|
40 |
+
"Running on local URL: http://127.0.0.1:7867\n",
|
41 |
"\n",
|
42 |
"To create a public link, set `share=True` in `launch()`.\n"
|
43 |
]
|
|
|
45 |
{
|
46 |
"data": {
|
47 |
"text/html": [
|
48 |
+
"<div><iframe src=\"http://127.0.0.1:7867/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
49 |
],
|
50 |
"text/plain": [
|
51 |
"<IPython.core.display.HTML object>"
|
|
|
58 |
"data": {
|
59 |
"text/plain": []
|
60 |
},
|
61 |
+
"execution_count": 76,
|
62 |
"metadata": {},
|
63 |
"output_type": "execute_result"
|
64 |
},
|
|
|
72 |
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
73 |
" > Model's license - apache 2.0\n",
|
74 |
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
75 |
+
" > Using model: Tacotron2\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
]
|
77 |
},
|
78 |
{
|
|
|
92 |
" return await future\n",
|
93 |
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 807, in run\n",
|
94 |
" result = context.run(func, *args)\n",
|
95 |
+
" File \"<ipython-input-76-b1dd8c5769eb>\", line 44, in on_model_tts_select\n",
|
96 |
+
" tts_var = TTS_local(model_name=model_name, output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)\n",
|
97 |
+
" File \"<ipython-input-76-b1dd8c5769eb>\", line 17, in __init__\n",
|
98 |
+
" self.load_vc_model_by_name(model_name=model_name, gpu=gpu)\n",
|
99 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\api.py\", line 363, in load_vc_model_by_name\n",
|
100 |
+
" self.voice_converter = Synthesizer(vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu)\n",
|
101 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\utils\\synthesizer.py\", line 97, in __init__\n",
|
102 |
+
" self._load_vc(vc_checkpoint, vc_config, use_cuda)\n",
|
103 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\utils\\synthesizer.py\", line 131, in _load_vc\n",
|
104 |
+
" self.vc_model = setup_vc_model(config=self.vc_config)\n",
|
105 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\vc\\models\\__init__.py\", line 17, in setup_model\n",
|
106 |
+
" return model\n",
|
107 |
+
"UnboundLocalError: local variable 'model' referenced before assignment\n"
|
108 |
]
|
109 |
}
|
110 |
],
|
|
|
113 |
"description = \"\"\"\"\"\"\n",
|
114 |
"article = \"\"\"\"\"\"\n",
|
115 |
"\n",
|
116 |
+
"class TTS_local(TTS):\n",
|
117 |
+
" def __init__(self, model_name=None, output_prefix: str = './', progress_bar: bool = True, gpu=False):\n",
|
118 |
+
" super().__init__(\n",
|
119 |
+
" model_name=None,\n",
|
120 |
+
" model_path=None,\n",
|
121 |
+
" config_path=None,\n",
|
122 |
+
" vocoder_path=None,\n",
|
123 |
+
" vocoder_config_path=None,\n",
|
124 |
+
" progress_bar=progress_bar,\n",
|
125 |
+
" gpu=False,\n",
|
126 |
+
" )\n",
|
127 |
+
" self.manager = ModelManager(models_file=self.get_models_file_path(), output_prefix=output_prefix, progress_bar=progress_bar, verbose=False)\n",
|
128 |
+
" if model_name is not None:\n",
|
129 |
+
" if \"tts_models\" in model_name or \"coqui_studio\" in model_name:\n",
|
130 |
+
" self.load_tts_model_by_name(model_name, gpu)\n",
|
131 |
+
" elif \"voice_conversion_models\" in model_name:\n",
|
132 |
+
" self.load_vc_model_by_name(model_name, gpu) \n",
|
133 |
+
"\n",
|
134 |
+
" \n",
|
135 |
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
136 |
"GPU = device == \"cuda\"\n",
|
137 |
"INT16MAX = np.iinfo(np.int16).max\n",
|
138 |
+
"MODEL_DIR = 'C:/Users/Torch/AppData/Local'\n",
|
139 |
+
"MANAGER = ModelManager(verbose=False)\n",
|
140 |
"\n",
|
141 |
+
"model_ids = MANAGER.list_models()\n",
|
142 |
+
"local_model_ids = [p.parts[-1].replace('--', '/') for p in (Path(MODEL_DIR) / 'tts').glob('*') if p.is_dir() and (p.parts[-1].replace('--', '/') in model_ids)]\n",
|
143 |
+
"model_tts_ids = [model for model in local_model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
144 |
+
"model_vocoder_ids = [model for model in local_model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
145 |
+
"model_vconv_ids = [model for model in local_model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
146 |
+
"\n",
|
147 |
+
"VC_MODEL = TTS_local(model_name='voice_conversion_models/multilingual/vctk/freevc24', \n",
|
148 |
+
" output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)\n",
|
149 |
"\n",
|
|
|
|
|
|
|
|
|
150 |
"examples_pt = 'examples'\n",
|
151 |
"allowed_extentions = ['.mp3', '.wav']\n",
|
152 |
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
|
|
157 |
"\n",
|
158 |
"\n",
|
159 |
"def on_model_tts_select(model_name):\n",
|
160 |
+
" tts_var = TTS_local(model_name=model_name, output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)\n",
|
161 |
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
162 |
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
163 |
" language = languages[0]\n",
|
|
|
205 |
" # Lazy code... save it to a temp file to resample it while reading it for VC\n",
|
206 |
" tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)\n",
|
207 |
" speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)\n",
|
208 |
+
" sample_rate = VC_MODEL.voice_converter.output_sample_rate\n",
|
209 |
" \n",
|
210 |
"\n",
|
211 |
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
|
|
270 |
" gr.HTML(article)\n",
|
271 |
"demo.launch(share=False)"
|
272 |
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": 40,
|
277 |
+
"id": "c2dc0da8",
|
278 |
+
"metadata": {},
|
279 |
+
"outputs": [
|
280 |
+
{
|
281 |
+
"name": "stdout",
|
282 |
+
"output_type": "stream",
|
283 |
+
"text": [
|
284 |
+
" > tts_models/en/blizzard2013/capacitron-t2-c50 is already downloaded.\n",
|
285 |
+
" > Model's license - apache 2.0\n",
|
286 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
287 |
+
" > vocoder_models/en/blizzard2013/hifigan_v2 is already downloaded.\n",
|
288 |
+
" > Model's license - apache 2.0\n",
|
289 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
290 |
+
" > Using model: tacotron2\n",
|
291 |
+
" > Setting up Audio Processor...\n",
|
292 |
+
" | > sample_rate:24000\n",
|
293 |
+
" | > resample:False\n",
|
294 |
+
" | > num_mels:80\n",
|
295 |
+
" | > log_func:np.log10\n",
|
296 |
+
" | > min_level_db:-100\n",
|
297 |
+
" | > frame_shift_ms:None\n",
|
298 |
+
" | > frame_length_ms:None\n",
|
299 |
+
" | > ref_level_db:20\n",
|
300 |
+
" | > fft_size:1024\n",
|
301 |
+
" | > power:1.5\n",
|
302 |
+
" | > preemphasis:0.0\n",
|
303 |
+
" | > griffin_lim_iters:60\n",
|
304 |
+
" | > signal_norm:True\n",
|
305 |
+
" | > symmetric_norm:True\n",
|
306 |
+
" | > mel_fmin:80.0\n",
|
307 |
+
" | > mel_fmax:12000.0\n",
|
308 |
+
" | > pitch_fmin:0.0\n",
|
309 |
+
" | > pitch_fmax:640.0\n",
|
310 |
+
" | > spec_gain:25.0\n",
|
311 |
+
" | > stft_pad_mode:reflect\n",
|
312 |
+
" | > max_norm:4.0\n",
|
313 |
+
" | > clip_norm:True\n",
|
314 |
+
" | > do_trim_silence:True\n",
|
315 |
+
" | > trim_db:60\n",
|
316 |
+
" | > do_sound_norm:False\n",
|
317 |
+
" | > do_amp_to_db_linear:True\n",
|
318 |
+
" | > do_amp_to_db_mel:True\n",
|
319 |
+
" | > do_rms_norm:False\n",
|
320 |
+
" | > db_level:None\n",
|
321 |
+
" | > stats_path:None\n",
|
322 |
+
" | > base:10\n",
|
323 |
+
" | > hop_length:256\n",
|
324 |
+
" | > win_length:1024\n",
|
325 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
326 |
+
" > Vocoder Model: hifigan\n",
|
327 |
+
" > Setting up Audio Processor...\n",
|
328 |
+
" | > sample_rate:24000\n",
|
329 |
+
" | > resample:False\n",
|
330 |
+
" | > num_mels:80\n",
|
331 |
+
" | > log_func:np.log10\n",
|
332 |
+
" | > min_level_db:-100\n",
|
333 |
+
" | > frame_shift_ms:None\n",
|
334 |
+
" | > frame_length_ms:None\n",
|
335 |
+
" | > ref_level_db:20\n",
|
336 |
+
" | > fft_size:1024\n",
|
337 |
+
" | > power:1.5\n",
|
338 |
+
" | > preemphasis:0.0\n",
|
339 |
+
" | > griffin_lim_iters:60\n",
|
340 |
+
" | > signal_norm:True\n",
|
341 |
+
" | > symmetric_norm:True\n",
|
342 |
+
" | > mel_fmin:80.0\n",
|
343 |
+
" | > mel_fmax:12000.0\n",
|
344 |
+
" | > pitch_fmin:1.0\n",
|
345 |
+
" | > pitch_fmax:640.0\n",
|
346 |
+
" | > spec_gain:20.0\n",
|
347 |
+
" | > stft_pad_mode:reflect\n",
|
348 |
+
" | > max_norm:4.0\n",
|
349 |
+
" | > clip_norm:True\n",
|
350 |
+
" | > do_trim_silence:False\n",
|
351 |
+
" | > trim_db:60\n",
|
352 |
+
" | > do_sound_norm:True\n",
|
353 |
+
" | > do_amp_to_db_linear:True\n",
|
354 |
+
" | > do_amp_to_db_mel:True\n",
|
355 |
+
" | > do_rms_norm:False\n",
|
356 |
+
" | > db_level:None\n",
|
357 |
+
" | > stats_path:None\n",
|
358 |
+
" | > base:10\n",
|
359 |
+
" | > hop_length:256\n",
|
360 |
+
" | > win_length:1024\n",
|
361 |
+
" > Generator Model: hifigan_generator\n",
|
362 |
+
" > Discriminator Model: hifigan_discriminator\n",
|
363 |
+
"Removing weight norm...\n"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"data": {
|
368 |
+
"text/plain": [
|
369 |
+
"<TTS.utils.synthesizer.Synthesizer at 0x498b2588>"
|
370 |
+
]
|
371 |
+
},
|
372 |
+
"execution_count": 40,
|
373 |
+
"metadata": {},
|
374 |
+
"output_type": "execute_result"
|
375 |
+
}
|
376 |
+
],
|
377 |
+
"source": [
|
378 |
+
"from TTS.utils.synthesizer import Synthesizer\n",
|
379 |
+
"\n",
|
380 |
+
"MODEL_DIR = 'C:/Users/Torch/AppData/Local'\n",
|
381 |
+
"MANAGER = ModelManager(output_prefix=MODEL_DIR, verbose=False)\n",
|
382 |
+
"\n",
|
383 |
+
"model_ids = manager.list_models()\n",
|
384 |
+
"local_model_ids = [p.parts[-1].replace('--', '/') for p in (Path(model_dir) / 'tts').glob('*') if p.is_dir() and (p.parts[-1].replace('--', '/') in model_ids)]\n",
|
385 |
+
"model_tts_ids = [model for model in local_model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
386 |
+
"\n",
|
387 |
+
"\n",
|
388 |
+
"def load_local_checkpoint(model_name, use_cuda):\n",
|
389 |
+
" model_path = None\n",
|
390 |
+
" config_path = None\n",
|
391 |
+
" speakers_file_path = None\n",
|
392 |
+
" vocoder_path = None\n",
|
393 |
+
" vocoder_config_path = None\n",
|
394 |
+
"\n",
|
395 |
+
" model_path, config_path, model_item = MANAGER.download_model(model_name)\n",
|
396 |
+
" vocoder_name = model_item[\"default_vocoder\"]\n",
|
397 |
+
" if vocoder_name is not None:\n",
|
398 |
+
" vocoder_path, vocoder_config_path, _ = MANAGER.download_model(vocoder_name)\n",
|
399 |
+
" \n",
|
400 |
+
" if \"tts_models\" in model_name or \"coqui_studio\" in model_name:\n",
|
401 |
+
" synthesizer = Synthesizer(\n",
|
402 |
+
" tts_checkpoint=model_path,\n",
|
403 |
+
" tts_config_path=config_path,\n",
|
404 |
+
" tts_speakers_file=speakers_file_path,\n",
|
405 |
+
" tts_languages_file=None,\n",
|
406 |
+
" vocoder_checkpoint=vocoder_path,\n",
|
407 |
+
" vocoder_config=vocoder_config_path,\n",
|
408 |
+
" encoder_checkpoint=\"\",\n",
|
409 |
+
" encoder_config=\"\",\n",
|
410 |
+
" use_cuda=use_cuda,\n",
|
411 |
+
" )\n",
|
412 |
+
" elif \"voice_conversion_models\" in model_name:\n",
|
413 |
+
" self.load_vc_model_by_name(model_name, gpu)\n",
|
414 |
+
"\n",
|
415 |
+
" return synthesizer\n",
|
416 |
+
"\n",
|
417 |
+
"model_name = model_tts_ids[0]\n",
|
418 |
+
"load_local_checkpoint(model_name, use_cuda=False)"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": 77,
|
424 |
+
"id": "98c1d5a8",
|
425 |
+
"metadata": {},
|
426 |
+
"outputs": [
|
427 |
+
{
|
428 |
+
"name": "stdout",
|
429 |
+
"output_type": "stream",
|
430 |
+
"text": [
|
431 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
432 |
+
" > Model's license - apache 2.0\n",
|
433 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
434 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
435 |
+
" > Model's license - apache 2.0\n",
|
436 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
437 |
+
" > Using model: Tacotron2\n"
|
438 |
+
]
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"ename": "UnboundLocalError",
|
442 |
+
"evalue": "local variable 'model' referenced before assignment",
|
443 |
+
"output_type": "error",
|
444 |
+
"traceback": [
|
445 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
446 |
+
"\u001b[1;31mUnboundLocalError\u001b[0m Traceback (most recent call last)",
|
447 |
+
"\u001b[1;32m<ipython-input-77-6dbf83b539b0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mTTS_local\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'tts_models/en/ljspeech/tacotron2-DDC_ph'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moutput_prefix\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mMODEL_DIR\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mprogress_bar\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgpu\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mGPU\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
448 |
+
"\u001b[1;32m<ipython-input-76-b1dd8c5769eb>\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, model_name, output_prefix, progress_bar, gpu)\u001b[0m\n\u001b[0;32m 15\u001b[0m )\n\u001b[0;32m 16\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmanager\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mModelManager\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodels_file\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_models_file_path\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moutput_prefix\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0moutput_prefix\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mprogress_bar\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mprogress_bar\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload_vc_model_by_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgpu\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mgpu\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 18\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[0mdevice\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"cuda\"\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_available\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32melse\u001b[0m \u001b[1;34m\"cpu\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
449 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\api.py\u001b[0m in \u001b[0;36mload_vc_model_by_name\u001b[1;34m(self, model_name, gpu)\u001b[0m\n\u001b[0;32m 361\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel_name\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 362\u001b[0m \u001b[0mmodel_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdownload_model_by_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 363\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvoice_converter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mSynthesizer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvc_config\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mconfig_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0muse_cuda\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mgpu\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 364\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 365\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mload_tts_model_by_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmodel_name\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgpu\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
450 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\utils\\synthesizer.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, tts_checkpoint, tts_config_path, tts_speakers_file, tts_languages_file, vocoder_checkpoint, vocoder_config, encoder_checkpoint, encoder_config, vc_checkpoint, vc_config, model_dir, voice_dir, use_cuda)\u001b[0m\n\u001b[0;32m 95\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 96\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 97\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_load_vc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvc_config\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0muse_cuda\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 98\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutput_sample_rate\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maudio\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"output_sample_rate\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 99\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
451 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\utils\\synthesizer.py\u001b[0m in \u001b[0;36m_load_vc\u001b[1;34m(self, vc_checkpoint, vc_config_path, use_cuda)\u001b[0m\n\u001b[0;32m 129\u001b[0m \u001b[1;31m# pylint: disable=global-statement\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 130\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_config\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvc_config_path\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 131\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_model\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msetup_vc_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 132\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_model\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload_checkpoint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 133\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0muse_cuda\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
452 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\vc\\models\\__init__.py\u001b[0m in \u001b[0;36msetup_model\u001b[1;34m(config, samples)\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[0mMyModel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"TTS.vc.models.freevc\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mFreeVC\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mMyModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minit_from_config\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msamples\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
453 |
+
"\u001b[1;31mUnboundLocalError\u001b[0m: local variable 'model' referenced before assignment"
|
454 |
+
]
|
455 |
+
}
|
456 |
+
],
|
457 |
+
"source": [
|
458 |
+
"TTS_local(model_name='tts_models/en/ljspeech/tacotron2-DDC_ph', output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)"
|
459 |
+
]
|
460 |
}
|
461 |
],
|
462 |
"metadata": {
|
Coqui.ai-Copy1.ipynb
ADDED
@@ -0,0 +1,880 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 41,
|
6 |
+
"id": "4110138e",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import torch\n",
|
13 |
+
"import torch.nn.functional as F\n",
|
14 |
+
"from pathlib import Path\n",
|
15 |
+
"import tempfile\n",
|
16 |
+
"\n",
|
17 |
+
"from TTS.api import TTS\n",
|
18 |
+
"from TTS.utils.manage import ModelManager\n",
|
19 |
+
"from TTS.utils.synthesizer import Synthesizer"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": 78,
|
25 |
+
"id": "b7f07cd9",
|
26 |
+
"metadata": {
|
27 |
+
"scrolled": false
|
28 |
+
},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"name": "stdout",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
" > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded.\n",
|
35 |
+
" > Model's license - MIT\n",
|
36 |
+
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
37 |
+
" > Using model: freevc\n",
|
38 |
+
" > Loading pretrained speaker encoder model ...\n",
|
39 |
+
"Loaded the voice encoder model on cpu in 0.02 seconds.\n",
|
40 |
+
"Running on local URL: http://127.0.0.1:7868\n",
|
41 |
+
"\n",
|
42 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"data": {
|
47 |
+
"text/html": [
|
48 |
+
"<div><iframe src=\"http://127.0.0.1:7868/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
49 |
+
],
|
50 |
+
"text/plain": [
|
51 |
+
"<IPython.core.display.HTML object>"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "display_data"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"data": {
|
59 |
+
"text/plain": []
|
60 |
+
},
|
61 |
+
"execution_count": 78,
|
62 |
+
"metadata": {},
|
63 |
+
"output_type": "execute_result"
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "stdout",
|
67 |
+
"output_type": "stream",
|
68 |
+
"text": [
|
69 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
70 |
+
" > Model's license - apache 2.0\n",
|
71 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
72 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
73 |
+
" > Model's license - apache 2.0\n",
|
74 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
75 |
+
" > Using model: Tacotron2\n",
|
76 |
+
" > Setting up Audio Processor...\n",
|
77 |
+
" | > sample_rate:22050\n",
|
78 |
+
" | > resample:False\n",
|
79 |
+
" | > num_mels:80\n",
|
80 |
+
" | > log_func:np.log10\n",
|
81 |
+
" | > min_level_db:-100\n",
|
82 |
+
" | > frame_shift_ms:None\n",
|
83 |
+
" | > frame_length_ms:None\n",
|
84 |
+
" | > ref_level_db:20\n",
|
85 |
+
" | > fft_size:1024\n",
|
86 |
+
" | > power:1.5\n",
|
87 |
+
" | > preemphasis:0.0\n",
|
88 |
+
" | > griffin_lim_iters:60\n",
|
89 |
+
" | > signal_norm:True\n",
|
90 |
+
" | > symmetric_norm:True\n",
|
91 |
+
" | > mel_fmin:50.0\n",
|
92 |
+
" | > mel_fmax:7600.0\n",
|
93 |
+
" | > pitch_fmin:0.0\n",
|
94 |
+
" | > pitch_fmax:640.0\n",
|
95 |
+
" | > spec_gain:1.0\n",
|
96 |
+
" | > stft_pad_mode:reflect\n",
|
97 |
+
" | > max_norm:4.0\n",
|
98 |
+
" | > clip_norm:True\n",
|
99 |
+
" | > do_trim_silence:True\n",
|
100 |
+
" | > trim_db:60\n",
|
101 |
+
" | > do_sound_norm:False\n",
|
102 |
+
" | > do_amp_to_db_linear:True\n",
|
103 |
+
" | > do_amp_to_db_mel:True\n",
|
104 |
+
" | > do_rms_norm:False\n",
|
105 |
+
" | > db_level:None\n",
|
106 |
+
" | > stats_path:C:/Users/Torch/AppData/Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
107 |
+
" | > base:10\n",
|
108 |
+
" | > hop_length:256\n",
|
109 |
+
" | > win_length:1024\n",
|
110 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
111 |
+
" > Vocoder Model: univnet\n",
|
112 |
+
" > Setting up Audio Processor...\n",
|
113 |
+
" | > sample_rate:22050\n",
|
114 |
+
" | > resample:False\n",
|
115 |
+
" | > num_mels:80\n",
|
116 |
+
" | > log_func:np.log10\n",
|
117 |
+
" | > min_level_db:-100\n",
|
118 |
+
" | > frame_shift_ms:None\n",
|
119 |
+
" | > frame_length_ms:None\n",
|
120 |
+
" | > ref_level_db:20\n",
|
121 |
+
" | > fft_size:1024\n",
|
122 |
+
" | > power:1.5\n",
|
123 |
+
" | > preemphasis:0.0\n",
|
124 |
+
" | > griffin_lim_iters:60\n",
|
125 |
+
" | > signal_norm:True\n",
|
126 |
+
" | > symmetric_norm:True\n",
|
127 |
+
" | > mel_fmin:50.0\n",
|
128 |
+
" | > mel_fmax:7600.0\n",
|
129 |
+
" | > pitch_fmin:1.0\n",
|
130 |
+
" | > pitch_fmax:640.0\n",
|
131 |
+
" | > spec_gain:1.0\n",
|
132 |
+
" | > stft_pad_mode:reflect\n",
|
133 |
+
" | > max_norm:4.0\n",
|
134 |
+
" | > clip_norm:True\n",
|
135 |
+
" | > do_trim_silence:True\n",
|
136 |
+
" | > trim_db:60\n",
|
137 |
+
" | > do_sound_norm:False\n",
|
138 |
+
" | > do_amp_to_db_linear:True\n",
|
139 |
+
" | > do_amp_to_db_mel:True\n",
|
140 |
+
" | > do_rms_norm:False\n",
|
141 |
+
" | > db_level:None\n",
|
142 |
+
" | > stats_path:C:/Users/Torch/AppData/Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
143 |
+
" | > base:10\n",
|
144 |
+
" | > hop_length:256\n",
|
145 |
+
" | > win_length:1024\n",
|
146 |
+
" > Generator Model: univnet_generator\n",
|
147 |
+
" > Discriminator Model: univnet_discriminator\n",
|
148 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
149 |
+
"language: \n",
|
150 |
+
"speaker: \n",
|
151 |
+
"Using original voice\n",
|
152 |
+
" > Text splitted to sentences.\n",
|
153 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
154 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
155 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
156 |
+
" > Processing time: 3.2799999713897705\n",
|
157 |
+
" > Real-time factor: 0.3775684898572943\n",
|
158 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
159 |
+
"language: \n",
|
160 |
+
"speaker: \n",
|
161 |
+
"voice cloning with the voice conversion model\n",
|
162 |
+
" > Text splitted to sentences.\n",
|
163 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
164 |
+
" > Processing time: 3.2300000190734863\n",
|
165 |
+
" > Real-time factor: 0.3718128780726402\n",
|
166 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
167 |
+
"language: \n",
|
168 |
+
"speaker: \n",
|
169 |
+
"voice cloning with the voice conversion model\n",
|
170 |
+
" > Text splitted to sentences.\n",
|
171 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
172 |
+
" > Processing time: 3.065000295639038\n",
|
173 |
+
" > Real-time factor: 0.3528193729057425\n",
|
174 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
175 |
+
"language: \n",
|
176 |
+
"speaker: \n",
|
177 |
+
"voice cloning with the voice conversion model\n",
|
178 |
+
" > Text splitted to sentences.\n",
|
179 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
180 |
+
" > Processing time: 2.9799997806549072\n",
|
181 |
+
" > Real-time factor: 0.3430347642595259\n",
|
182 |
+
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
183 |
+
"source_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\b6e9c24083a878478ebbecd7bc42e1f631c05df6\\henry5-0-100.wav\n",
|
184 |
+
"target_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\9a558946172057b073ebcd01c8bec7e2d1ff998e\\hmm_i_dont_know-0-100.wav\n",
|
185 |
+
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
186 |
+
"source_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\b6e9c24083a878478ebbecd7bc42e1f631c05df6\\henry5-0-100.wav\n",
|
187 |
+
"target_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\f730b71860c5932c67deaae15949118446d6c7d7\\arctic_a0407_clb-0-100.wav\n",
|
188 |
+
" > tts_models/multilingual/multi-dataset/your_tts is already downloaded.\n",
|
189 |
+
" > Model's license - CC BY-NC-ND 4.0\n",
|
190 |
+
" > Check https://creativecommons.org/licenses/by-nc-nd/4.0/ for more info.\n",
|
191 |
+
" > Using model: vits\n",
|
192 |
+
" > Setting up Audio Processor...\n",
|
193 |
+
" | > sample_rate:16000\n",
|
194 |
+
" | > resample:False\n",
|
195 |
+
" | > num_mels:80\n",
|
196 |
+
" | > log_func:np.log10\n",
|
197 |
+
" | > min_level_db:0\n",
|
198 |
+
" | > frame_shift_ms:None\n",
|
199 |
+
" | > frame_length_ms:None\n",
|
200 |
+
" | > ref_level_db:None\n",
|
201 |
+
" | > fft_size:1024\n",
|
202 |
+
" | > power:None\n",
|
203 |
+
" | > preemphasis:0.0\n",
|
204 |
+
" | > griffin_lim_iters:None\n",
|
205 |
+
" | > signal_norm:None\n",
|
206 |
+
" | > symmetric_norm:None\n",
|
207 |
+
" | > mel_fmin:0\n",
|
208 |
+
" | > mel_fmax:None\n",
|
209 |
+
" | > pitch_fmin:None\n",
|
210 |
+
" | > pitch_fmax:None\n",
|
211 |
+
" | > spec_gain:20.0\n",
|
212 |
+
" | > stft_pad_mode:reflect\n",
|
213 |
+
" | > max_norm:1.0\n",
|
214 |
+
" | > clip_norm:True\n",
|
215 |
+
" | > do_trim_silence:False\n",
|
216 |
+
" | > trim_db:60\n",
|
217 |
+
" | > do_sound_norm:False\n",
|
218 |
+
" | > do_amp_to_db_linear:True\n",
|
219 |
+
" | > do_amp_to_db_mel:True\n",
|
220 |
+
" | > do_rms_norm:False\n",
|
221 |
+
" | > db_level:None\n",
|
222 |
+
" | > stats_path:None\n",
|
223 |
+
" | > base:10\n",
|
224 |
+
" | > hop_length:256\n",
|
225 |
+
" | > win_length:1024\n",
|
226 |
+
" > Model fully restored. \n",
|
227 |
+
" > Setting up Audio Processor...\n",
|
228 |
+
" | > sample_rate:16000\n",
|
229 |
+
" | > resample:False\n",
|
230 |
+
" | > num_mels:64\n",
|
231 |
+
" | > log_func:np.log10\n",
|
232 |
+
" | > min_level_db:-100\n",
|
233 |
+
" | > frame_shift_ms:None\n",
|
234 |
+
" | > frame_length_ms:None\n",
|
235 |
+
" | > ref_level_db:20\n",
|
236 |
+
" | > fft_size:512\n",
|
237 |
+
" | > power:1.5\n",
|
238 |
+
" | > preemphasis:0.97\n",
|
239 |
+
" | > griffin_lim_iters:60\n",
|
240 |
+
" | > signal_norm:False\n",
|
241 |
+
" | > symmetric_norm:False\n",
|
242 |
+
" | > mel_fmin:0\n",
|
243 |
+
" | > mel_fmax:8000.0\n",
|
244 |
+
" | > pitch_fmin:1.0\n",
|
245 |
+
" | > pitch_fmax:640.0\n",
|
246 |
+
" | > spec_gain:20.0\n",
|
247 |
+
" | > stft_pad_mode:reflect\n",
|
248 |
+
" | > max_norm:4.0\n",
|
249 |
+
" | > clip_norm:False\n",
|
250 |
+
" | > do_trim_silence:False\n",
|
251 |
+
" | > trim_db:60\n",
|
252 |
+
" | > do_sound_norm:False\n",
|
253 |
+
" | > do_amp_to_db_linear:True\n",
|
254 |
+
" | > do_amp_to_db_mel:True\n",
|
255 |
+
" | > do_rms_norm:True\n",
|
256 |
+
" | > db_level:-27.0\n",
|
257 |
+
" | > stats_path:None\n",
|
258 |
+
" | > base:10\n",
|
259 |
+
" | > hop_length:160\n",
|
260 |
+
" | > win_length:400\n",
|
261 |
+
" > External Speaker Encoder Loaded !!\n",
|
262 |
+
" > initialization of language-embedding layers.\n",
|
263 |
+
" > Model fully restored. \n",
|
264 |
+
" > Setting up Audio Processor...\n",
|
265 |
+
" | > sample_rate:16000\n",
|
266 |
+
" | > resample:False\n",
|
267 |
+
" | > num_mels:64\n",
|
268 |
+
" | > log_func:np.log10\n",
|
269 |
+
" | > min_level_db:-100\n",
|
270 |
+
" | > frame_shift_ms:None\n",
|
271 |
+
" | > frame_length_ms:None\n",
|
272 |
+
" | > ref_level_db:20\n",
|
273 |
+
" | > fft_size:512\n",
|
274 |
+
" | > power:1.5\n",
|
275 |
+
" | > preemphasis:0.97\n",
|
276 |
+
" | > griffin_lim_iters:60\n",
|
277 |
+
" | > signal_norm:False\n",
|
278 |
+
" | > symmetric_norm:False\n",
|
279 |
+
" | > mel_fmin:0\n",
|
280 |
+
" | > mel_fmax:8000.0\n",
|
281 |
+
" | > pitch_fmin:1.0\n",
|
282 |
+
" | > pitch_fmax:640.0\n",
|
283 |
+
" | > spec_gain:20.0\n",
|
284 |
+
" | > stft_pad_mode:reflect\n",
|
285 |
+
" | > max_norm:4.0\n",
|
286 |
+
" | > clip_norm:False\n",
|
287 |
+
" | > do_trim_silence:False\n",
|
288 |
+
" | > trim_db:60\n",
|
289 |
+
" | > do_sound_norm:False\n",
|
290 |
+
" | > do_amp_to_db_linear:True\n",
|
291 |
+
" | > do_amp_to_db_mel:True\n",
|
292 |
+
" | > do_rms_norm:True\n",
|
293 |
+
" | > db_level:-27.0\n",
|
294 |
+
" | > stats_path:None\n",
|
295 |
+
" | > base:10\n",
|
296 |
+
" | > hop_length:160\n",
|
297 |
+
" | > win_length:400\n",
|
298 |
+
"model: tts_models/multilingual/multi-dataset/your_tts\n",
|
299 |
+
"language: en\n",
|
300 |
+
"speaker: female-en-5\n",
|
301 |
+
"Using original voice\n",
|
302 |
+
" > Text splitted to sentences.\n",
|
303 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
304 |
+
" > Processing time: 1.8219997882843018\n",
|
305 |
+
" > Real-time factor: 0.19457494535287287\n",
|
306 |
+
"model: tts_models/multilingual/multi-dataset/your_tts\n",
|
307 |
+
"language: en\n",
|
308 |
+
"speaker: female-en-5\n",
|
309 |
+
"voice cloning with the tts\n",
|
310 |
+
" > Text splitted to sentences.\n",
|
311 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
312 |
+
" > Processing time: 2.863999843597412\n",
|
313 |
+
" > Real-time factor: 0.3084877039635299\n",
|
314 |
+
"model: tts_models/multilingual/multi-dataset/your_tts\n",
|
315 |
+
"language: fr-fr\n",
|
316 |
+
"speaker: female-en-5\n",
|
317 |
+
"voice cloning with the tts\n",
|
318 |
+
" > Text splitted to sentences.\n",
|
319 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
320 |
+
" > Processing time: 2.546999931335449\n",
|
321 |
+
" > Real-time factor: 0.326036857569822\n",
|
322 |
+
" > tts_models/en/ljspeech/tacotron2-DDC is already downloaded.\n",
|
323 |
+
" > Model's license - apache 2.0\n",
|
324 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
325 |
+
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
326 |
+
" > Model's license - apache 2.0\n",
|
327 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
328 |
+
" > Using model: Tacotron2\n",
|
329 |
+
" > Setting up Audio Processor...\n",
|
330 |
+
" | > sample_rate:22050\n",
|
331 |
+
" | > resample:False\n",
|
332 |
+
" | > num_mels:80\n",
|
333 |
+
" | > log_func:np.log\n",
|
334 |
+
" | > min_level_db:-100\n",
|
335 |
+
" | > frame_shift_ms:None\n",
|
336 |
+
" | > frame_length_ms:None\n",
|
337 |
+
" | > ref_level_db:20\n",
|
338 |
+
" | > fft_size:1024\n",
|
339 |
+
" | > power:1.5\n",
|
340 |
+
" | > preemphasis:0.0\n",
|
341 |
+
" | > griffin_lim_iters:60\n",
|
342 |
+
" | > signal_norm:False\n",
|
343 |
+
" | > symmetric_norm:True\n",
|
344 |
+
" | > mel_fmin:0\n",
|
345 |
+
" | > mel_fmax:8000.0\n",
|
346 |
+
" | > pitch_fmin:1.0\n",
|
347 |
+
" | > pitch_fmax:640.0\n",
|
348 |
+
" | > spec_gain:1.0\n",
|
349 |
+
" | > stft_pad_mode:reflect\n",
|
350 |
+
" | > max_norm:4.0\n",
|
351 |
+
" | > clip_norm:True\n",
|
352 |
+
" | > do_trim_silence:True\n",
|
353 |
+
" | > trim_db:60\n",
|
354 |
+
" | > do_sound_norm:False\n",
|
355 |
+
" | > do_amp_to_db_linear:True\n",
|
356 |
+
" | > do_amp_to_db_mel:True\n",
|
357 |
+
" | > do_rms_norm:False\n",
|
358 |
+
" | > db_level:None\n",
|
359 |
+
" | > stats_path:None\n",
|
360 |
+
" | > base:2.718281828459045\n",
|
361 |
+
" | > hop_length:256\n",
|
362 |
+
" | > win_length:1024\n"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"name": "stdout",
|
367 |
+
"output_type": "stream",
|
368 |
+
"text": [
|
369 |
+
" > Model's reduction rate `r` is set to: 1\n",
|
370 |
+
" > Vocoder Model: hifigan\n",
|
371 |
+
" > Setting up Audio Processor...\n",
|
372 |
+
" | > sample_rate:22050\n",
|
373 |
+
" | > resample:False\n",
|
374 |
+
" | > num_mels:80\n",
|
375 |
+
" | > log_func:np.log\n",
|
376 |
+
" | > min_level_db:-100\n",
|
377 |
+
" | > frame_shift_ms:None\n",
|
378 |
+
" | > frame_length_ms:None\n",
|
379 |
+
" | > ref_level_db:20\n",
|
380 |
+
" | > fft_size:1024\n",
|
381 |
+
" | > power:1.5\n",
|
382 |
+
" | > preemphasis:0.0\n",
|
383 |
+
" | > griffin_lim_iters:60\n",
|
384 |
+
" | > signal_norm:False\n",
|
385 |
+
" | > symmetric_norm:True\n",
|
386 |
+
" | > mel_fmin:0\n",
|
387 |
+
" | > mel_fmax:8000.0\n",
|
388 |
+
" | > pitch_fmin:1.0\n",
|
389 |
+
" | > pitch_fmax:640.0\n",
|
390 |
+
" | > spec_gain:1.0\n",
|
391 |
+
" | > stft_pad_mode:reflect\n",
|
392 |
+
" | > max_norm:4.0\n",
|
393 |
+
" | > clip_norm:True\n",
|
394 |
+
" | > do_trim_silence:False\n",
|
395 |
+
" | > trim_db:60\n",
|
396 |
+
" | > do_sound_norm:False\n",
|
397 |
+
" | > do_amp_to_db_linear:True\n",
|
398 |
+
" | > do_amp_to_db_mel:True\n",
|
399 |
+
" | > do_rms_norm:False\n",
|
400 |
+
" | > db_level:None\n",
|
401 |
+
" | > stats_path:None\n",
|
402 |
+
" | > base:2.718281828459045\n",
|
403 |
+
" | > hop_length:256\n",
|
404 |
+
" | > win_length:1024\n",
|
405 |
+
" > Generator Model: hifigan_generator\n",
|
406 |
+
" > Discriminator Model: hifigan_discriminator\n",
|
407 |
+
"Removing weight norm...\n",
|
408 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC\n",
|
409 |
+
"language: \n",
|
410 |
+
"speaker: \n",
|
411 |
+
"voice cloning with the voice conversion model\n",
|
412 |
+
" > Text splitted to sentences.\n",
|
413 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
414 |
+
" > Processing time: 4.205999851226807\n",
|
415 |
+
" > Real-time factor: 0.4124959824204343\n",
|
416 |
+
" > tts_models/en/ljspeech/tacotron2-DCA is already downloaded.\n",
|
417 |
+
" > Model's license - MPL\n",
|
418 |
+
" > Check https://www.mozilla.org/en-US/MPL/2.0/ for more info.\n",
|
419 |
+
" > vocoder_models/en/ljspeech/multiband-melgan is already downloaded.\n",
|
420 |
+
" > Model's license - MPL\n",
|
421 |
+
" > Check https://www.mozilla.org/en-US/MPL/2.0/ for more info.\n",
|
422 |
+
" > Using model: Tacotron2\n",
|
423 |
+
" > Setting up Audio Processor...\n",
|
424 |
+
" | > sample_rate:22050\n",
|
425 |
+
" | > resample:False\n",
|
426 |
+
" | > num_mels:80\n",
|
427 |
+
" | > log_func:np.log10\n",
|
428 |
+
" | > min_level_db:-100\n",
|
429 |
+
" | > frame_shift_ms:None\n",
|
430 |
+
" | > frame_length_ms:None\n",
|
431 |
+
" | > ref_level_db:20\n",
|
432 |
+
" | > fft_size:1024\n",
|
433 |
+
" | > power:1.5\n",
|
434 |
+
" | > preemphasis:0.0\n",
|
435 |
+
" | > griffin_lim_iters:60\n",
|
436 |
+
" | > signal_norm:True\n",
|
437 |
+
" | > symmetric_norm:True\n",
|
438 |
+
" | > mel_fmin:50.0\n",
|
439 |
+
" | > mel_fmax:7600.0\n",
|
440 |
+
" | > pitch_fmin:0.0\n",
|
441 |
+
" | > pitch_fmax:640.0\n",
|
442 |
+
" | > spec_gain:1.0\n",
|
443 |
+
" | > stft_pad_mode:reflect\n",
|
444 |
+
" | > max_norm:4.0\n",
|
445 |
+
" | > clip_norm:True\n",
|
446 |
+
" | > do_trim_silence:True\n",
|
447 |
+
" | > trim_db:60\n",
|
448 |
+
" | > do_sound_norm:False\n",
|
449 |
+
" | > do_amp_to_db_linear:True\n",
|
450 |
+
" | > do_amp_to_db_mel:True\n",
|
451 |
+
" | > do_rms_norm:False\n",
|
452 |
+
" | > db_level:None\n",
|
453 |
+
" | > stats_path:C:/Users/Torch/AppData/Local\\tts\\tts_models--en--ljspeech--tacotron2-DCA\\scale_stats.npy\n",
|
454 |
+
" | > base:10\n",
|
455 |
+
" | > hop_length:256\n",
|
456 |
+
" | > win_length:1024\n",
|
457 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
458 |
+
" > Vocoder Model: multiband_melgan\n",
|
459 |
+
" > Setting up Audio Processor...\n",
|
460 |
+
" | > sample_rate:22050\n",
|
461 |
+
" | > resample:False\n",
|
462 |
+
" | > num_mels:80\n",
|
463 |
+
" | > log_func:np.log10\n",
|
464 |
+
" | > min_level_db:-100\n",
|
465 |
+
" | > frame_shift_ms:None\n",
|
466 |
+
" | > frame_length_ms:None\n",
|
467 |
+
" | > ref_level_db:0\n",
|
468 |
+
" | > fft_size:1024\n",
|
469 |
+
" | > power:1.5\n",
|
470 |
+
" | > preemphasis:0.0\n",
|
471 |
+
" | > griffin_lim_iters:60\n",
|
472 |
+
" | > signal_norm:True\n",
|
473 |
+
" | > symmetric_norm:True\n",
|
474 |
+
" | > mel_fmin:50.0\n",
|
475 |
+
" | > mel_fmax:7600.0\n",
|
476 |
+
" | > pitch_fmin:0.0\n",
|
477 |
+
" | > pitch_fmax:640.0\n",
|
478 |
+
" | > spec_gain:1.0\n",
|
479 |
+
" | > stft_pad_mode:reflect\n",
|
480 |
+
" | > max_norm:4.0\n",
|
481 |
+
" | > clip_norm:True\n",
|
482 |
+
" | > do_trim_silence:True\n",
|
483 |
+
" | > trim_db:60\n",
|
484 |
+
" | > do_sound_norm:False\n",
|
485 |
+
" | > do_amp_to_db_linear:True\n",
|
486 |
+
" | > do_amp_to_db_mel:True\n",
|
487 |
+
" | > do_rms_norm:False\n",
|
488 |
+
" | > db_level:None\n",
|
489 |
+
" | > stats_path:C:/Users/Torch/AppData/Local\\tts\\vocoder_models--en--ljspeech--multiband-melgan\\scale_stats.npy\n",
|
490 |
+
" | > base:10\n",
|
491 |
+
" | > hop_length:256\n",
|
492 |
+
" | > win_length:1024\n",
|
493 |
+
" > Generator Model: multiband_melgan_generator\n",
|
494 |
+
" > Discriminator Model: melgan_multiscale_discriminator\n",
|
495 |
+
"model: tts_models/en/ljspeech/tacotron2-DCA\n",
|
496 |
+
"language: \n",
|
497 |
+
"speaker: \n",
|
498 |
+
"voice cloning with the voice conversion model\n",
|
499 |
+
" > Text splitted to sentences.\n",
|
500 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
501 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
502 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
503 |
+
" > Processing time: 2.384999990463257\n",
|
504 |
+
" > Real-time factor: 0.2687952332235178\n"
|
505 |
+
]
|
506 |
+
}
|
507 |
+
],
|
508 |
+
"source": [
|
509 |
+
"title = \"\"\n",
|
510 |
+
"description = \"\"\"\"\"\"\n",
|
511 |
+
"article = \"\"\"\"\"\"\n",
|
512 |
+
"\n",
|
513 |
+
"class TTS_local(TTS):\n",
|
514 |
+
" def __init__(self, model_name=None, output_prefix: str = './', progress_bar: bool = True, gpu=False):\n",
|
515 |
+
" super().__init__(\n",
|
516 |
+
" model_name=None,\n",
|
517 |
+
" model_path=None,\n",
|
518 |
+
" config_path=None,\n",
|
519 |
+
" vocoder_path=None,\n",
|
520 |
+
" vocoder_config_path=None,\n",
|
521 |
+
" progress_bar=progress_bar,\n",
|
522 |
+
" gpu=False,\n",
|
523 |
+
" )\n",
|
524 |
+
" self.manager = ModelManager(models_file=self.get_models_file_path(), output_prefix=output_prefix, progress_bar=progress_bar, verbose=False)\n",
|
525 |
+
" if model_name is not None:\n",
|
526 |
+
" if \"tts_models\" in model_name or \"coqui_studio\" in model_name:\n",
|
527 |
+
" self.load_tts_model_by_name(model_name, gpu)\n",
|
528 |
+
" elif \"voice_conversion_models\" in model_name:\n",
|
529 |
+
" self.load_vc_model_by_name(model_name, gpu) \n",
|
530 |
+
"\n",
|
531 |
+
" \n",
|
532 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
533 |
+
"GPU = device == \"cuda\"\n",
|
534 |
+
"INT16MAX = np.iinfo(np.int16).max\n",
|
535 |
+
"MODEL_DIR = 'C:/Users/Torch/AppData/Local'\n",
|
536 |
+
"MANAGER = ModelManager(verbose=False)\n",
|
537 |
+
"\n",
|
538 |
+
"model_ids = MANAGER.list_models()\n",
|
539 |
+
"local_model_ids = [p.parts[-1].replace('--', '/') for p in (Path(MODEL_DIR) / 'tts').glob('*') if p.is_dir() and (p.parts[-1].replace('--', '/') in model_ids)]\n",
|
540 |
+
"model_tts_ids = [model for model in local_model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
541 |
+
"model_vocoder_ids = [model for model in local_model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
542 |
+
"model_vconv_ids = [model for model in local_model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
543 |
+
"\n",
|
544 |
+
"VC_MODEL = TTS_local(model_name='voice_conversion_models/multilingual/vctk/freevc24', \n",
|
545 |
+
" output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)\n",
|
546 |
+
"\n",
|
547 |
+
"examples_pt = 'examples'\n",
|
548 |
+
"allowed_extentions = ['.mp3', '.wav']\n",
|
549 |
+
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
550 |
+
"verse = \"\"\"Mary had a little lamb,\n",
|
551 |
+
"Its fleece was white as snow.\n",
|
552 |
+
"Everywhere the child went,\n",
|
553 |
+
"The little lamb was sure to go.\"\"\"\n",
|
554 |
+
"\n",
|
555 |
+
"\n",
|
556 |
+
"def on_model_tts_select(model_name):\n",
|
557 |
+
" tts_var = TTS_local(model_name=model_name, output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)\n",
|
558 |
+
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
559 |
+
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
560 |
+
" language = languages[0]\n",
|
561 |
+
" speaker = speakers[0]\n",
|
562 |
+
" return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\\\n",
|
563 |
+
" gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)\n",
|
564 |
+
"\n",
|
565 |
+
"\n",
|
566 |
+
"def on_voicedropdown(x):\n",
|
567 |
+
" return examples[x]\n",
|
568 |
+
"\n",
|
569 |
+
"\n",
|
570 |
+
"def voice_clone(source_wav, target_wav):\n",
|
571 |
+
" print(f'model: {VC_MODEL.model_name}\\nsource_wav: {source_wav}\\ntarget_wav: {target_wav}')\n",
|
572 |
+
" sample_rate = VC_MODEL.voice_converter.output_sample_rate\n",
|
573 |
+
" if source_wav is None or target_wav is None:\n",
|
574 |
+
" return (sample_rate, np.zeros(0).astype(np.int16))\n",
|
575 |
+
"\n",
|
576 |
+
" speech = VC_MODEL.voice_conversion(source_wav=source_wav, target_wav=target_wav)\n",
|
577 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
578 |
+
" return (sample_rate, speech)\n",
|
579 |
+
"\n",
|
580 |
+
"\n",
|
581 |
+
"def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):\n",
|
582 |
+
" if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):\n",
|
583 |
+
" return (16000, np.zeros(0).astype(np.int16))\n",
|
584 |
+
"\n",
|
585 |
+
" sample_rate = tts_model.synthesizer.output_sample_rate\n",
|
586 |
+
" if tts_model.is_multi_speaker:\n",
|
587 |
+
" speaker = {s.replace('\\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting\n",
|
588 |
+
" print(f'model: {tts_model.model_name}\\nlanguage: {language}\\nspeaker: {speaker}')\n",
|
589 |
+
"\n",
|
590 |
+
" language = None if language == '' else language\n",
|
591 |
+
" speaker = None if speaker == '' else speaker\n",
|
592 |
+
" if use_original_voice:\n",
|
593 |
+
" print('Using original voice')\n",
|
594 |
+
" speech = tts_model.tts(text, language=language, speaker=speaker) \n",
|
595 |
+
" elif tts_model.synthesizer.tts_model.speaker_manager and tts_model.synthesizer.tts_model.speaker_manager.encoder_ap:\n",
|
596 |
+
" print('voice cloning with the tts')\n",
|
597 |
+
" speech = tts_model.tts(text, language=language, speaker_wav=target_wav)\n",
|
598 |
+
" else:\n",
|
599 |
+
" print('voice cloning with the voice conversion model')\n",
|
600 |
+
"# speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)\n",
|
601 |
+
" with tempfile.NamedTemporaryFile(suffix=\".wav\", delete=False) as fp:\n",
|
602 |
+
" # Lazy code... save it to a temp file to resample it while reading it for VC\n",
|
603 |
+
" tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)\n",
|
604 |
+
" speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)\n",
|
605 |
+
" sample_rate = VC_MODEL.voice_converter.output_sample_rate\n",
|
606 |
+
" \n",
|
607 |
+
"\n",
|
608 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
609 |
+
" return (sample_rate, speech)\n",
|
610 |
+
"\n",
|
611 |
+
"\n",
|
612 |
+
"with gr.Blocks() as demo:\n",
|
613 |
+
" tts_model = gr.State(None)\n",
|
614 |
+
"# vc_model = gr.State(None)\n",
|
615 |
+
" def activate(*args):\n",
|
616 |
+
" return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)\n",
|
617 |
+
" def deactivate(*args):\n",
|
618 |
+
" return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)\n",
|
619 |
+
"\n",
|
620 |
+
" \n",
|
621 |
+
" gr.Markdown(description)\n",
|
622 |
+
"\n",
|
623 |
+
" with gr.Row(equal_height=True):\n",
|
624 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
625 |
+
" model_tts_dropdown = gr.Dropdown(model_tts_ids, value=None, label='Text-to-speech model', interactive=True)\n",
|
626 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
627 |
+
" language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)\n",
|
628 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
629 |
+
" speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)\n",
|
630 |
+
" \n",
|
631 |
+
" with gr.Accordion(\"Target voice\", open=False) as accordion:\n",
|
632 |
+
" gr.Markdown(\"Upload target voice...\")\n",
|
633 |
+
" with gr.Row(equal_height=True):\n",
|
634 |
+
" voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')\n",
|
635 |
+
" voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)\n",
|
636 |
+
"\n",
|
637 |
+
" with gr.Row(equal_height=True):\n",
|
638 |
+
" with gr.Column(scale=2):\n",
|
639 |
+
" with gr.Row(equal_height=True):\n",
|
640 |
+
" with gr.Column():\n",
|
641 |
+
" text_to_convert = gr.Textbox(verse)\n",
|
642 |
+
" orig_voice = gr.Checkbox(label='Use original voice')\n",
|
643 |
+
" voice_to_convert = gr.Audio(label=\"Upload voice to convert\", source='upload', type='filepath')\n",
|
644 |
+
" with gr.Row(equal_height=True):\n",
|
645 |
+
" button_text = gr.Button('Text to speech', interactive=True)\n",
|
646 |
+
" button_audio = gr.Button('Convert audio', interactive=True)\n",
|
647 |
+
" with gr.Row(equal_height=True):\n",
|
648 |
+
" speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False) \n",
|
649 |
+
" \n",
|
650 |
+
" # actions\n",
|
651 |
+
" model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
652 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
653 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
654 |
+
" voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
655 |
+
" then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\\\n",
|
656 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
657 |
+
"\n",
|
658 |
+
" button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
659 |
+
" then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice], \n",
|
660 |
+
" outputs=speech).\\\n",
|
661 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
662 |
+
"\n",
|
663 |
+
" button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
664 |
+
" then(fn=voice_clone, inputs=[voice_to_convert, voice_upload], outputs=speech).\\\n",
|
665 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
666 |
+
" \n",
|
667 |
+
" gr.HTML(article)\n",
|
668 |
+
"demo.launch(share=False)"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"cell_type": "code",
|
673 |
+
"execution_count": 40,
|
674 |
+
"id": "d97a1ab5",
|
675 |
+
"metadata": {},
|
676 |
+
"outputs": [
|
677 |
+
{
|
678 |
+
"name": "stdout",
|
679 |
+
"output_type": "stream",
|
680 |
+
"text": [
|
681 |
+
" > tts_models/en/blizzard2013/capacitron-t2-c50 is already downloaded.\n",
|
682 |
+
" > Model's license - apache 2.0\n",
|
683 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
684 |
+
" > vocoder_models/en/blizzard2013/hifigan_v2 is already downloaded.\n",
|
685 |
+
" > Model's license - apache 2.0\n",
|
686 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
687 |
+
" > Using model: tacotron2\n",
|
688 |
+
" > Setting up Audio Processor...\n",
|
689 |
+
" | > sample_rate:24000\n",
|
690 |
+
" | > resample:False\n",
|
691 |
+
" | > num_mels:80\n",
|
692 |
+
" | > log_func:np.log10\n",
|
693 |
+
" | > min_level_db:-100\n",
|
694 |
+
" | > frame_shift_ms:None\n",
|
695 |
+
" | > frame_length_ms:None\n",
|
696 |
+
" | > ref_level_db:20\n",
|
697 |
+
" | > fft_size:1024\n",
|
698 |
+
" | > power:1.5\n",
|
699 |
+
" | > preemphasis:0.0\n",
|
700 |
+
" | > griffin_lim_iters:60\n",
|
701 |
+
" | > signal_norm:True\n",
|
702 |
+
" | > symmetric_norm:True\n",
|
703 |
+
" | > mel_fmin:80.0\n",
|
704 |
+
" | > mel_fmax:12000.0\n",
|
705 |
+
" | > pitch_fmin:0.0\n",
|
706 |
+
" | > pitch_fmax:640.0\n",
|
707 |
+
" | > spec_gain:25.0\n",
|
708 |
+
" | > stft_pad_mode:reflect\n",
|
709 |
+
" | > max_norm:4.0\n",
|
710 |
+
" | > clip_norm:True\n",
|
711 |
+
" | > do_trim_silence:True\n",
|
712 |
+
" | > trim_db:60\n",
|
713 |
+
" | > do_sound_norm:False\n",
|
714 |
+
" | > do_amp_to_db_linear:True\n",
|
715 |
+
" | > do_amp_to_db_mel:True\n",
|
716 |
+
" | > do_rms_norm:False\n",
|
717 |
+
" | > db_level:None\n",
|
718 |
+
" | > stats_path:None\n",
|
719 |
+
" | > base:10\n",
|
720 |
+
" | > hop_length:256\n",
|
721 |
+
" | > win_length:1024\n",
|
722 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
723 |
+
" > Vocoder Model: hifigan\n",
|
724 |
+
" > Setting up Audio Processor...\n",
|
725 |
+
" | > sample_rate:24000\n",
|
726 |
+
" | > resample:False\n",
|
727 |
+
" | > num_mels:80\n",
|
728 |
+
" | > log_func:np.log10\n",
|
729 |
+
" | > min_level_db:-100\n",
|
730 |
+
" | > frame_shift_ms:None\n",
|
731 |
+
" | > frame_length_ms:None\n",
|
732 |
+
" | > ref_level_db:20\n",
|
733 |
+
" | > fft_size:1024\n",
|
734 |
+
" | > power:1.5\n",
|
735 |
+
" | > preemphasis:0.0\n",
|
736 |
+
" | > griffin_lim_iters:60\n",
|
737 |
+
" | > signal_norm:True\n",
|
738 |
+
" | > symmetric_norm:True\n",
|
739 |
+
" | > mel_fmin:80.0\n",
|
740 |
+
" | > mel_fmax:12000.0\n",
|
741 |
+
" | > pitch_fmin:1.0\n",
|
742 |
+
" | > pitch_fmax:640.0\n",
|
743 |
+
" | > spec_gain:20.0\n",
|
744 |
+
" | > stft_pad_mode:reflect\n",
|
745 |
+
" | > max_norm:4.0\n",
|
746 |
+
" | > clip_norm:True\n",
|
747 |
+
" | > do_trim_silence:False\n",
|
748 |
+
" | > trim_db:60\n",
|
749 |
+
" | > do_sound_norm:True\n",
|
750 |
+
" | > do_amp_to_db_linear:True\n",
|
751 |
+
" | > do_amp_to_db_mel:True\n",
|
752 |
+
" | > do_rms_norm:False\n",
|
753 |
+
" | > db_level:None\n",
|
754 |
+
" | > stats_path:None\n",
|
755 |
+
" | > base:10\n",
|
756 |
+
" | > hop_length:256\n",
|
757 |
+
" | > win_length:1024\n",
|
758 |
+
" > Generator Model: hifigan_generator\n",
|
759 |
+
" > Discriminator Model: hifigan_discriminator\n",
|
760 |
+
"Removing weight norm...\n"
|
761 |
+
]
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"data": {
|
765 |
+
"text/plain": [
|
766 |
+
"<TTS.utils.synthesizer.Synthesizer at 0x498b2588>"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
"execution_count": 40,
|
770 |
+
"metadata": {},
|
771 |
+
"output_type": "execute_result"
|
772 |
+
}
|
773 |
+
],
|
774 |
+
"source": [
|
775 |
+
"from TTS.utils.synthesizer import Synthesizer\n",
|
776 |
+
"\n",
|
777 |
+
"MODEL_DIR = 'C:/Users/Torch/AppData/Local'\n",
|
778 |
+
"MANAGER = ModelManager(output_prefix=MODEL_DIR, verbose=False)\n",
|
779 |
+
"\n",
|
780 |
+
"model_ids = manager.list_models()\n",
|
781 |
+
"local_model_ids = [p.parts[-1].replace('--', '/') for p in (Path(model_dir) / 'tts').glob('*') if p.is_dir() and (p.parts[-1].replace('--', '/') in model_ids)]\n",
|
782 |
+
"model_tts_ids = [model for model in local_model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
783 |
+
"\n",
|
784 |
+
"\n",
|
785 |
+
"def load_local_checkpoint(model_name, use_cuda):\n",
|
786 |
+
" model_path = None\n",
|
787 |
+
" config_path = None\n",
|
788 |
+
" speakers_file_path = None\n",
|
789 |
+
" vocoder_path = None\n",
|
790 |
+
" vocoder_config_path = None\n",
|
791 |
+
"\n",
|
792 |
+
" model_path, config_path, model_item = MANAGER.download_model(model_name)\n",
|
793 |
+
" vocoder_name = model_item[\"default_vocoder\"]\n",
|
794 |
+
" if vocoder_name is not None:\n",
|
795 |
+
" vocoder_path, vocoder_config_path, _ = MANAGER.download_model(vocoder_name)\n",
|
796 |
+
" \n",
|
797 |
+
" if \"tts_models\" in model_name or \"coqui_studio\" in model_name:\n",
|
798 |
+
" synthesizer = Synthesizer(\n",
|
799 |
+
" tts_checkpoint=model_path,\n",
|
800 |
+
" tts_config_path=config_path,\n",
|
801 |
+
" tts_speakers_file=speakers_file_path,\n",
|
802 |
+
" tts_languages_file=None,\n",
|
803 |
+
" vocoder_checkpoint=vocoder_path,\n",
|
804 |
+
" vocoder_config=vocoder_config_path,\n",
|
805 |
+
" encoder_checkpoint=\"\",\n",
|
806 |
+
" encoder_config=\"\",\n",
|
807 |
+
" use_cuda=use_cuda,\n",
|
808 |
+
" )\n",
|
809 |
+
" elif \"voice_conversion_models\" in model_name:\n",
|
810 |
+
" self.load_vc_model_by_name(model_name, gpu)\n",
|
811 |
+
"\n",
|
812 |
+
" return synthesizer\n",
|
813 |
+
"\n",
|
814 |
+
"model_name = model_tts_ids[0]\n",
|
815 |
+
"load_local_checkpoint(model_name, use_cuda=False)"
|
816 |
+
]
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"cell_type": "code",
|
820 |
+
"execution_count": 77,
|
821 |
+
"id": "35c8a08c",
|
822 |
+
"metadata": {},
|
823 |
+
"outputs": [
|
824 |
+
{
|
825 |
+
"name": "stdout",
|
826 |
+
"output_type": "stream",
|
827 |
+
"text": [
|
828 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
829 |
+
" > Model's license - apache 2.0\n",
|
830 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
831 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
832 |
+
" > Model's license - apache 2.0\n",
|
833 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
834 |
+
" > Using model: Tacotron2\n"
|
835 |
+
]
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"ename": "UnboundLocalError",
|
839 |
+
"evalue": "local variable 'model' referenced before assignment",
|
840 |
+
"output_type": "error",
|
841 |
+
"traceback": [
|
842 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
843 |
+
"\u001b[1;31mUnboundLocalError\u001b[0m Traceback (most recent call last)",
|
844 |
+
"\u001b[1;32m<ipython-input-77-6dbf83b539b0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mTTS_local\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'tts_models/en/ljspeech/tacotron2-DDC_ph'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moutput_prefix\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mMODEL_DIR\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mprogress_bar\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgpu\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mGPU\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
845 |
+
"\u001b[1;32m<ipython-input-76-b1dd8c5769eb>\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, model_name, output_prefix, progress_bar, gpu)\u001b[0m\n\u001b[0;32m 15\u001b[0m )\n\u001b[0;32m 16\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmanager\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mModelManager\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodels_file\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_models_file_path\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moutput_prefix\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0moutput_prefix\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mprogress_bar\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mprogress_bar\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload_vc_model_by_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgpu\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mgpu\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 18\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[0mdevice\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"cuda\"\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcuda\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_available\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32melse\u001b[0m \u001b[1;34m\"cpu\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
846 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\api.py\u001b[0m in \u001b[0;36mload_vc_model_by_name\u001b[1;34m(self, model_name, gpu)\u001b[0m\n\u001b[0;32m 361\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmodel_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel_name\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 362\u001b[0m \u001b[0mmodel_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdownload_model_by_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmodel_name\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 363\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvoice_converter\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mSynthesizer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvc_config\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mconfig_path\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0muse_cuda\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mgpu\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 364\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 365\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mload_tts_model_by_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmodel_name\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgpu\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
847 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\utils\\synthesizer.py\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, tts_checkpoint, tts_config_path, tts_speakers_file, tts_languages_file, vocoder_checkpoint, vocoder_config, encoder_checkpoint, encoder_config, vc_checkpoint, vc_config, model_dir, voice_dir, use_cuda)\u001b[0m\n\u001b[0;32m 95\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 96\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 97\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_load_vc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvc_config\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0muse_cuda\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 98\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0moutput_sample_rate\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maudio\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m\"output_sample_rate\"\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 99\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
|
848 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\utils\\synthesizer.py\u001b[0m in \u001b[0;36m_load_vc\u001b[1;34m(self, vc_checkpoint, vc_config_path, use_cuda)\u001b[0m\n\u001b[0;32m 129\u001b[0m \u001b[1;31m# pylint: disable=global-statement\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 130\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mload_config\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvc_config_path\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 131\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_model\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msetup_vc_model\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 132\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_model\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload_checkpoint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvc_config\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvc_checkpoint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 133\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0muse_cuda\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
849 |
+
"\u001b[1;32mC:\\ProgramData\\Anaconda3\\lib\\site-packages\\TTS\\vc\\models\\__init__.py\u001b[0m in \u001b[0;36msetup_model\u001b[1;34m(config, samples)\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[0mMyModel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mimportlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mimport_module\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"TTS.vc.models.freevc\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mFreeVC\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mMyModel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minit_from_config\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msamples\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
850 |
+
"\u001b[1;31mUnboundLocalError\u001b[0m: local variable 'model' referenced before assignment"
|
851 |
+
]
|
852 |
+
}
|
853 |
+
],
|
854 |
+
"source": [
|
855 |
+
"TTS_local(model_name='tts_models/en/ljspeech/tacotron2-DDC_ph', output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)"
|
856 |
+
]
|
857 |
+
}
|
858 |
+
],
|
859 |
+
"metadata": {
|
860 |
+
"kernelspec": {
|
861 |
+
"display_name": "Python 3",
|
862 |
+
"language": "python",
|
863 |
+
"name": "python3"
|
864 |
+
},
|
865 |
+
"language_info": {
|
866 |
+
"codemirror_mode": {
|
867 |
+
"name": "ipython",
|
868 |
+
"version": 3
|
869 |
+
},
|
870 |
+
"file_extension": ".py",
|
871 |
+
"mimetype": "text/x-python",
|
872 |
+
"name": "python",
|
873 |
+
"nbconvert_exporter": "python",
|
874 |
+
"pygments_lexer": "ipython3",
|
875 |
+
"version": "3.7.9"
|
876 |
+
}
|
877 |
+
},
|
878 |
+
"nbformat": 4,
|
879 |
+
"nbformat_minor": 5
|
880 |
+
}
|
Coqui.ai.ipynb
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "e65fcd73",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import torch\n",
|
13 |
+
"import torch.nn.functional as F\n",
|
14 |
+
"from pathlib import Path\n",
|
15 |
+
"\n",
|
16 |
+
"from TTS.api import TTS\n",
|
17 |
+
"from TTS.utils.manage import ModelManager"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
+
"id": "f902a92c",
|
24 |
+
"metadata": {
|
25 |
+
"scrolled": false
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"name": "stdout",
|
30 |
+
"output_type": "stream",
|
31 |
+
"text": [
|
32 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
33 |
+
"\n",
|
34 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"data": {
|
39 |
+
"text/html": [
|
40 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
41 |
+
],
|
42 |
+
"text/plain": [
|
43 |
+
"<IPython.core.display.HTML object>"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"metadata": {},
|
47 |
+
"output_type": "display_data"
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"data": {
|
51 |
+
"text/plain": []
|
52 |
+
},
|
53 |
+
"execution_count": 2,
|
54 |
+
"metadata": {},
|
55 |
+
"output_type": "execute_result"
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"name": "stdout",
|
59 |
+
"output_type": "stream",
|
60 |
+
"text": [
|
61 |
+
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
62 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
63 |
+
" > Model's license - apache 2.0\n",
|
64 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
65 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
66 |
+
" > Model's license - apache 2.0\n",
|
67 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
68 |
+
" > Using model: Tacotron2\n",
|
69 |
+
" > Setting up Audio Processor...\n",
|
70 |
+
" | > sample_rate:22050\n",
|
71 |
+
" | > resample:False\n",
|
72 |
+
" | > num_mels:80\n",
|
73 |
+
" | > log_func:np.log10\n",
|
74 |
+
" | > min_level_db:-100\n",
|
75 |
+
" | > frame_shift_ms:None\n",
|
76 |
+
" | > frame_length_ms:None\n",
|
77 |
+
" | > ref_level_db:20\n",
|
78 |
+
" | > fft_size:1024\n",
|
79 |
+
" | > power:1.5\n",
|
80 |
+
" | > preemphasis:0.0\n",
|
81 |
+
" | > griffin_lim_iters:60\n",
|
82 |
+
" | > signal_norm:True\n",
|
83 |
+
" | > symmetric_norm:True\n",
|
84 |
+
" | > mel_fmin:50.0\n",
|
85 |
+
" | > mel_fmax:7600.0\n",
|
86 |
+
" | > pitch_fmin:0.0\n",
|
87 |
+
" | > pitch_fmax:640.0\n",
|
88 |
+
" | > spec_gain:1.0\n",
|
89 |
+
" | > stft_pad_mode:reflect\n",
|
90 |
+
" | > max_norm:4.0\n",
|
91 |
+
" | > clip_norm:True\n",
|
92 |
+
" | > do_trim_silence:True\n",
|
93 |
+
" | > trim_db:60\n",
|
94 |
+
" | > do_sound_norm:False\n",
|
95 |
+
" | > do_amp_to_db_linear:True\n",
|
96 |
+
" | > do_amp_to_db_mel:True\n",
|
97 |
+
" | > do_rms_norm:False\n",
|
98 |
+
" | > db_level:None\n",
|
99 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
100 |
+
" | > base:10\n",
|
101 |
+
" | > hop_length:256\n",
|
102 |
+
" | > win_length:1024\n",
|
103 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
104 |
+
" > Vocoder Model: univnet\n",
|
105 |
+
" > Setting up Audio Processor...\n",
|
106 |
+
" | > sample_rate:22050\n",
|
107 |
+
" | > resample:False\n",
|
108 |
+
" | > num_mels:80\n",
|
109 |
+
" | > log_func:np.log10\n",
|
110 |
+
" | > min_level_db:-100\n",
|
111 |
+
" | > frame_shift_ms:None\n",
|
112 |
+
" | > frame_length_ms:None\n",
|
113 |
+
" | > ref_level_db:20\n",
|
114 |
+
" | > fft_size:1024\n",
|
115 |
+
" | > power:1.5\n",
|
116 |
+
" | > preemphasis:0.0\n",
|
117 |
+
" | > griffin_lim_iters:60\n",
|
118 |
+
" | > signal_norm:True\n",
|
119 |
+
" | > symmetric_norm:True\n",
|
120 |
+
" | > mel_fmin:50.0\n",
|
121 |
+
" | > mel_fmax:7600.0\n",
|
122 |
+
" | > pitch_fmin:1.0\n",
|
123 |
+
" | > pitch_fmax:640.0\n",
|
124 |
+
" | > spec_gain:1.0\n",
|
125 |
+
" | > stft_pad_mode:reflect\n",
|
126 |
+
" | > max_norm:4.0\n",
|
127 |
+
" | > clip_norm:True\n",
|
128 |
+
" | > do_trim_silence:True\n",
|
129 |
+
" | > trim_db:60\n",
|
130 |
+
" | > do_sound_norm:False\n",
|
131 |
+
" | > do_amp_to_db_linear:True\n",
|
132 |
+
" | > do_amp_to_db_mel:True\n",
|
133 |
+
" | > do_rms_norm:False\n",
|
134 |
+
" | > db_level:None\n",
|
135 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
136 |
+
" | > base:10\n",
|
137 |
+
" | > hop_length:256\n",
|
138 |
+
" | > win_length:1024\n",
|
139 |
+
" > Generator Model: univnet_generator\n",
|
140 |
+
" > Discriminator Model: univnet_discriminator\n",
|
141 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
142 |
+
"language: \n",
|
143 |
+
"speaker: \n",
|
144 |
+
"voice cloning with the voice conversion model\n",
|
145 |
+
" > Text splitted to sentences.\n",
|
146 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
147 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
148 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
149 |
+
" > Processing time: 3.4810001850128174\n",
|
150 |
+
" > Real-time factor: 0.400706095887971\n",
|
151 |
+
" > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded.\n",
|
152 |
+
" > Model's license - MIT\n",
|
153 |
+
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
154 |
+
" > Using model: freevc\n",
|
155 |
+
" > Loading pretrained speaker encoder model ...\n",
|
156 |
+
"Loaded the voice encoder model on cpu in 0.09 seconds.\n",
|
157 |
+
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
158 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
159 |
+
" > Model's license - apache 2.0\n",
|
160 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
161 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
162 |
+
" > Model's license - apache 2.0\n",
|
163 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
164 |
+
" > Using model: Tacotron2\n",
|
165 |
+
" > Setting up Audio Processor...\n",
|
166 |
+
" | > sample_rate:22050\n",
|
167 |
+
" | > resample:False\n",
|
168 |
+
" | > num_mels:80\n",
|
169 |
+
" | > log_func:np.log10\n",
|
170 |
+
" | > min_level_db:-100\n",
|
171 |
+
" | > frame_shift_ms:None\n",
|
172 |
+
" | > frame_length_ms:None\n",
|
173 |
+
" | > ref_level_db:20\n",
|
174 |
+
" | > fft_size:1024\n",
|
175 |
+
" | > power:1.5\n",
|
176 |
+
" | > preemphasis:0.0\n",
|
177 |
+
" | > griffin_lim_iters:60\n",
|
178 |
+
" | > signal_norm:True\n",
|
179 |
+
" | > symmetric_norm:True\n",
|
180 |
+
" | > mel_fmin:50.0\n",
|
181 |
+
" | > mel_fmax:7600.0\n",
|
182 |
+
" | > pitch_fmin:0.0\n",
|
183 |
+
" | > pitch_fmax:640.0\n",
|
184 |
+
" | > spec_gain:1.0\n",
|
185 |
+
" | > stft_pad_mode:reflect\n",
|
186 |
+
" | > max_norm:4.0\n",
|
187 |
+
" | > clip_norm:True\n",
|
188 |
+
" | > do_trim_silence:True\n",
|
189 |
+
" | > trim_db:60\n",
|
190 |
+
" | > do_sound_norm:False\n",
|
191 |
+
" | > do_amp_to_db_linear:True\n",
|
192 |
+
" | > do_amp_to_db_mel:True\n",
|
193 |
+
" | > do_rms_norm:False\n",
|
194 |
+
" | > db_level:None\n",
|
195 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
196 |
+
" | > base:10\n",
|
197 |
+
" | > hop_length:256\n",
|
198 |
+
" | > win_length:1024\n",
|
199 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
200 |
+
" > Vocoder Model: univnet\n",
|
201 |
+
" > Setting up Audio Processor...\n",
|
202 |
+
" | > sample_rate:22050\n",
|
203 |
+
" | > resample:False\n",
|
204 |
+
" | > num_mels:80\n",
|
205 |
+
" | > log_func:np.log10\n",
|
206 |
+
" | > min_level_db:-100\n",
|
207 |
+
" | > frame_shift_ms:None\n",
|
208 |
+
" | > frame_length_ms:None\n",
|
209 |
+
" | > ref_level_db:20\n",
|
210 |
+
" | > fft_size:1024\n",
|
211 |
+
" | > power:1.5\n",
|
212 |
+
" | > preemphasis:0.0\n",
|
213 |
+
" | > griffin_lim_iters:60\n",
|
214 |
+
" | > signal_norm:True\n",
|
215 |
+
" | > symmetric_norm:True\n",
|
216 |
+
" | > mel_fmin:50.0\n",
|
217 |
+
" | > mel_fmax:7600.0\n",
|
218 |
+
" | > pitch_fmin:1.0\n",
|
219 |
+
" | > pitch_fmax:640.0\n",
|
220 |
+
" | > spec_gain:1.0\n",
|
221 |
+
" | > stft_pad_mode:reflect\n",
|
222 |
+
" | > max_norm:4.0\n",
|
223 |
+
" | > clip_norm:True\n",
|
224 |
+
" | > do_trim_silence:True\n",
|
225 |
+
" | > trim_db:60\n",
|
226 |
+
" | > do_sound_norm:False\n",
|
227 |
+
" | > do_amp_to_db_linear:True\n",
|
228 |
+
" | > do_amp_to_db_mel:True\n",
|
229 |
+
" | > do_rms_norm:False\n",
|
230 |
+
" | > db_level:None\n",
|
231 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
232 |
+
" | > base:10\n",
|
233 |
+
" | > hop_length:256\n",
|
234 |
+
" | > win_length:1024\n",
|
235 |
+
" > Generator Model: univnet_generator\n",
|
236 |
+
" > Discriminator Model: univnet_discriminator\n",
|
237 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
238 |
+
"language: \n",
|
239 |
+
"speaker: \n",
|
240 |
+
"Using original voice\n",
|
241 |
+
" > Text splitted to sentences.\n",
|
242 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
243 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
244 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
245 |
+
" > Processing time: 2.931999921798706\n",
|
246 |
+
" > Real-time factor: 0.3375093879242267\n"
|
247 |
+
]
|
248 |
+
}
|
249 |
+
],
|
250 |
+
"source": [
|
251 |
+
"title = \"\"\n",
|
252 |
+
"description = \"\"\"\"\"\"\n",
|
253 |
+
"article = \"\"\"\"\"\"\n",
|
254 |
+
"\n",
|
255 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
256 |
+
"GPU = device == \"cuda\"\n",
|
257 |
+
"INT16MAX = np.iinfo(np.int16).max\n",
|
258 |
+
"\n",
|
259 |
+
"model_ids = ModelManager(verbose=False).list_models()\n",
|
260 |
+
"model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
261 |
+
"model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
262 |
+
"model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
263 |
+
"examples_pt = 'examples'\n",
|
264 |
+
"allowed_extentions = ['.mp3', '.wav']\n",
|
265 |
+
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
266 |
+
"verse = \"\"\"Mary had a little lamb,\n",
|
267 |
+
"Its fleece was white as snow.\n",
|
268 |
+
"Everywhere the child went,\n",
|
269 |
+
"The little lamb was sure to go.\"\"\"\n",
|
270 |
+
"\n",
|
271 |
+
"\n",
|
272 |
+
"\n",
|
273 |
+
"def on_model_tts_select(model_name, tts_var):\n",
|
274 |
+
" if tts_var is None or tts_var.model_name != model_name:\n",
|
275 |
+
" print(f'Loading TTS model from {model_name}')\n",
|
276 |
+
" tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
277 |
+
" else:\n",
|
278 |
+
" print(f'Passing through TTS model {tts_var.model_name}')\n",
|
279 |
+
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
280 |
+
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
281 |
+
" language = languages[0]\n",
|
282 |
+
" speaker = speakers[0]\n",
|
283 |
+
" return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\\\n",
|
284 |
+
" gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)\n",
|
285 |
+
"\n",
|
286 |
+
"\n",
|
287 |
+
"def on_model_vc_select(model_name, vc_var):\n",
|
288 |
+
" if vc_var is None or vc_var.model_name != model_name:\n",
|
289 |
+
" print(f'Loading voice conversion model from {model_name}')\n",
|
290 |
+
" vc_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
291 |
+
" else:\n",
|
292 |
+
" print(f'Passing through voice conversion model {vc_var.model_name}')\n",
|
293 |
+
" return vc_var\n",
|
294 |
+
"\n",
|
295 |
+
"\n",
|
296 |
+
"def on_voicedropdown(x):\n",
|
297 |
+
" return examples[x]\n",
|
298 |
+
"\n",
|
299 |
+
"\n",
|
300 |
+
"def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):\n",
|
301 |
+
" if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):\n",
|
302 |
+
" return (16000, np.zeros(0).astype(np.int16))\n",
|
303 |
+
" \n",
|
304 |
+
" sample_rate = tts_model.synthesizer.output_sample_rate\n",
|
305 |
+
" if tts_model.is_multi_speaker:\n",
|
306 |
+
" speaker = {s.replace('\\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting\n",
|
307 |
+
" print(f'model: {tts_model.model_name}\\nlanguage: {language}\\nspeaker: {speaker}')\n",
|
308 |
+
" \n",
|
309 |
+
" language = None if language == '' else language\n",
|
310 |
+
" speaker = None if speaker == '' else speaker\n",
|
311 |
+
" if use_original_voice:\n",
|
312 |
+
" print('Using original voice')\n",
|
313 |
+
" speech = tts_model.tts(text, language=language, speaker=speaker) \n",
|
314 |
+
" elif tts_model.synthesizer.tts_model.speaker_manager:\n",
|
315 |
+
" print('voice cloning with the tts')\n",
|
316 |
+
" speech = tts_model.tts(text, language=language, speaker_wav=target_wav)\n",
|
317 |
+
" else:\n",
|
318 |
+
" print('voice cloning with the voice conversion model')\n",
|
319 |
+
" speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)\n",
|
320 |
+
"\n",
|
321 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
322 |
+
" return (sample_rate, speech)\n",
|
323 |
+
"\n",
|
324 |
+
"\n",
|
325 |
+
"def voice_clone(vc_model, source_wav, target_wav):\n",
|
326 |
+
" print(f'model: {vc_model.model_name}\\nsource_wav: {source_wav}\\ntarget_wav: {target_wav}')\n",
|
327 |
+
" sample_rate = vc_model.voice_converter.output_sample_rate\n",
|
328 |
+
" if vc_model is None or source_wav is None or target_wav is None:\n",
|
329 |
+
" return (sample_rate, np.zeros(0).astype(np.int16))\n",
|
330 |
+
"\n",
|
331 |
+
" speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)\n",
|
332 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
333 |
+
" return (sample_rate, speech)\n",
|
334 |
+
"\n",
|
335 |
+
"\n",
|
336 |
+
"with gr.Blocks() as demo:\n",
|
337 |
+
" tts_model = gr.State(None)\n",
|
338 |
+
" vc_model = gr.State(None)\n",
|
339 |
+
" def activate(*args):\n",
|
340 |
+
" return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)\n",
|
341 |
+
" def deactivate(*args):\n",
|
342 |
+
" return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)\n",
|
343 |
+
"\n",
|
344 |
+
" gr.Markdown(description)\n",
|
345 |
+
"\n",
|
346 |
+
" with gr.Row(equal_height=True):\n",
|
347 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
348 |
+
" model_tts_dropdown = gr.Dropdown(model_tts_ids, value=model_tts_ids[3], label='Text-to-speech model', interactive=True)\n",
|
349 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
350 |
+
" language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)\n",
|
351 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
352 |
+
" speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)\n",
|
353 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
354 |
+
" with gr.Row(equal_height=True):\n",
|
355 |
+
"# model_vocoder_dropdown = gr.Dropdown(model_voc_ids, label='Select vocoder model', interactive=True)\n",
|
356 |
+
" model_vc_dropdown = gr.Dropdown(model_vc_ids, value=model_vc_ids[0], label='Voice conversion model', interactive=True)\n",
|
357 |
+
" \n",
|
358 |
+
" with gr.Accordion(\"Target voice\", open=False) as accordion:\n",
|
359 |
+
" gr.Markdown(\"Upload target voice...\")\n",
|
360 |
+
" with gr.Row(equal_height=True):\n",
|
361 |
+
" voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')\n",
|
362 |
+
" voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)\n",
|
363 |
+
"\n",
|
364 |
+
" with gr.Row(equal_height=True):\n",
|
365 |
+
" with gr.Column(scale=2):\n",
|
366 |
+
" with gr.Row(equal_height=True):\n",
|
367 |
+
" with gr.Column():\n",
|
368 |
+
" text_to_convert = gr.Textbox(verse)\n",
|
369 |
+
" orig_voice = gr.Checkbox(label='Use original voice')\n",
|
370 |
+
" voice_to_convert = gr.Audio(label=\"Upload voice to convert\", source='upload', type='filepath')\n",
|
371 |
+
" with gr.Row(equal_height=True):\n",
|
372 |
+
" button_text = gr.Button('Text to speech', interactive=True)\n",
|
373 |
+
" button_audio = gr.Button('Convert audio', interactive=True)\n",
|
374 |
+
" with gr.Row(equal_height=True):\n",
|
375 |
+
" speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False) \n",
|
376 |
+
" \n",
|
377 |
+
" # actions\n",
|
378 |
+
" model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
379 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
380 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
381 |
+
" model_vc_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
382 |
+
" then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\\\n",
|
383 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
384 |
+
" voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
385 |
+
" then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\\\n",
|
386 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
387 |
+
" \n",
|
388 |
+
" button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
389 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
390 |
+
" then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice], \n",
|
391 |
+
" outputs=speech).\\\n",
|
392 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
393 |
+
"\n",
|
394 |
+
" button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
395 |
+
" then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\\\n",
|
396 |
+
" then(fn=voice_clone, inputs=[vc_model, voice_to_convert, voice_upload], outputs=speech).\\\n",
|
397 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
398 |
+
" \n",
|
399 |
+
" gr.HTML(article)\n",
|
400 |
+
"demo.launch(share=False)"
|
401 |
+
]
|
402 |
+
}
|
403 |
+
],
|
404 |
+
"metadata": {
|
405 |
+
"kernelspec": {
|
406 |
+
"display_name": "Python 3",
|
407 |
+
"language": "python",
|
408 |
+
"name": "python3"
|
409 |
+
},
|
410 |
+
"language_info": {
|
411 |
+
"codemirror_mode": {
|
412 |
+
"name": "ipython",
|
413 |
+
"version": 3
|
414 |
+
},
|
415 |
+
"file_extension": ".py",
|
416 |
+
"mimetype": "text/x-python",
|
417 |
+
"name": "python",
|
418 |
+
"nbconvert_exporter": "python",
|
419 |
+
"pygments_lexer": "ipython3",
|
420 |
+
"version": "3.7.9"
|
421 |
+
}
|
422 |
+
},
|
423 |
+
"nbformat": 4,
|
424 |
+
"nbformat_minor": 5
|
425 |
+
}
|
app.bak.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from TTS.api import TTS
|
8 |
+
from TTS.utils.manage import ModelManager
|
9 |
+
|
10 |
+
|
11 |
+
title = ""
|
12 |
+
description = """"""
|
13 |
+
article = """"""
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
GPU = device == "cuda"
|
17 |
+
INT16MAX = np.iinfo(np.int16).max
|
18 |
+
|
19 |
+
model_ids = ModelManager(verbose=False).list_models()
|
20 |
+
model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
21 |
+
model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]
|
22 |
+
model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
23 |
+
examples_pt = 'examples'
|
24 |
+
allowed_extentions = ['.mp3', '.wav']
|
25 |
+
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
|
26 |
+
verse = """Mary had a little lamb,
|
27 |
+
Its fleece was white as snow.
|
28 |
+
Everywhere the child went,
|
29 |
+
The little lamb was sure to go."""
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def on_model_tts_select(model_name, tts_var):
|
34 |
+
if tts_var is None or tts_var.model_name != model_name:
|
35 |
+
print(f'Loading TTS model from {model_name}')
|
36 |
+
tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
37 |
+
else:
|
38 |
+
print(f'Passing through TTS model {tts_var.model_name}')
|
39 |
+
languages = tts_var.languages if tts_var.is_multi_lingual else ['']
|
40 |
+
speakers = [s.replace('\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting
|
41 |
+
language = languages[0]
|
42 |
+
speaker = speakers[0]
|
43 |
+
return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\
|
44 |
+
gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)
|
45 |
+
|
46 |
+
|
47 |
+
def on_model_vc_select(model_name, vc_var):
|
48 |
+
if vc_var is None or vc_var.model_name != model_name:
|
49 |
+
print(f'Loading voice conversion model from {model_name}')
|
50 |
+
vc_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
51 |
+
else:
|
52 |
+
print(f'Passing through voice conversion model {vc_var.model_name}')
|
53 |
+
return vc_var
|
54 |
+
|
55 |
+
|
56 |
+
def on_voicedropdown(x):
|
57 |
+
return examples[x]
|
58 |
+
|
59 |
+
|
60 |
+
def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):
|
61 |
+
if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):
|
62 |
+
return (16000, np.zeros(0).astype(np.int16))
|
63 |
+
|
64 |
+
sample_rate = tts_model.synthesizer.output_sample_rate
|
65 |
+
if tts_model.is_multi_speaker:
|
66 |
+
speaker = {s.replace('\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting
|
67 |
+
print(f'model: {tts_model.model_name}\nlanguage: {language}\nspeaker: {speaker}')
|
68 |
+
|
69 |
+
language = None if language == '' else language
|
70 |
+
speaker = None if speaker == '' else speaker
|
71 |
+
if use_original_voice:
|
72 |
+
print('Using original voice')
|
73 |
+
speech = tts_model.tts(text, language=language, speaker=speaker)
|
74 |
+
elif tts_model.synthesizer.tts_model.speaker_manager:
|
75 |
+
print('voice cloning with the tts')
|
76 |
+
speech = tts_model.tts(text, language=language, speaker_wav=target_wav)
|
77 |
+
else:
|
78 |
+
print('voice cloning with the voice conversion model')
|
79 |
+
speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)
|
80 |
+
|
81 |
+
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
82 |
+
return (sample_rate, speech)
|
83 |
+
|
84 |
+
|
85 |
+
def voice_clone(vc_model, source_wav, target_wav):
|
86 |
+
print(f'model: {vc_model.model_name}\nsource_wav: {source_wav}\ntarget_wav: {target_wav}')
|
87 |
+
sample_rate = vc_model.voice_converter.output_sample_rate
|
88 |
+
if vc_model is None or source_wav is None or target_wav is None:
|
89 |
+
return (sample_rate, np.zeros(0).astype(np.int16))
|
90 |
+
|
91 |
+
speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)
|
92 |
+
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
93 |
+
return (sample_rate, speech)
|
94 |
+
|
95 |
+
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
tts_model = gr.State(None)
|
98 |
+
vc_model = gr.State(None)
|
99 |
+
def activate(*args):
|
100 |
+
return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
|
101 |
+
def deactivate(*args):
|
102 |
+
return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)
|
103 |
+
|
104 |
+
gr.Markdown(description)
|
105 |
+
|
106 |
+
with gr.Row(equal_height=True):
|
107 |
+
with gr.Column(scale=5, min_width=50):
|
108 |
+
model_tts_dropdown = gr.Dropdown(model_tts_ids, value=model_tts_ids[3], label='Text-to-speech model', interactive=True)
|
109 |
+
with gr.Column(scale=1, min_width=10):
|
110 |
+
language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)
|
111 |
+
with gr.Column(scale=1, min_width=10):
|
112 |
+
speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)
|
113 |
+
with gr.Column(scale=5, min_width=50):
|
114 |
+
with gr.Row(equal_height=True):
|
115 |
+
# model_vocoder_dropdown = gr.Dropdown(model_voc_ids, label='Select vocoder model', interactive=True)
|
116 |
+
model_vc_dropdown = gr.Dropdown(model_vc_ids, value=model_vc_ids[0], label='Voice conversion model', interactive=True)
|
117 |
+
|
118 |
+
with gr.Accordion("Target voice", open=False) as accordion:
|
119 |
+
gr.Markdown("Upload target voice...")
|
120 |
+
with gr.Row(equal_height=True):
|
121 |
+
voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')
|
122 |
+
voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)
|
123 |
+
|
124 |
+
with gr.Row(equal_height=True):
|
125 |
+
with gr.Column(scale=2):
|
126 |
+
with gr.Row(equal_height=True):
|
127 |
+
with gr.Column():
|
128 |
+
text_to_convert = gr.Textbox(verse)
|
129 |
+
orig_voice = gr.Checkbox(label='Use original voice')
|
130 |
+
voice_to_convert = gr.Audio(label="Upload voice to convert", source='upload', type='filepath')
|
131 |
+
with gr.Row(equal_height=True):
|
132 |
+
button_text = gr.Button('Text to speech', interactive=True)
|
133 |
+
button_audio = gr.Button('Convert audio', interactive=True)
|
134 |
+
with gr.Row(equal_height=True):
|
135 |
+
speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False)
|
136 |
+
|
137 |
+
# actions
|
138 |
+
model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
139 |
+
then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
140 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
141 |
+
model_vc_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
142 |
+
then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\
|
143 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
144 |
+
voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
145 |
+
then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
|
146 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
147 |
+
|
148 |
+
button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
149 |
+
then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
150 |
+
then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice],
|
151 |
+
outputs=speech).\
|
152 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
153 |
+
|
154 |
+
button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
155 |
+
then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\
|
156 |
+
then(fn=voice_clone, inputs=[vc_model, voice_to_convert, voice_upload], outputs=speech).\
|
157 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
158 |
+
|
159 |
+
gr.HTML(article)
|
160 |
+
demo.launch(share=False)
|
app.py
CHANGED
@@ -13,16 +13,40 @@ title = ""
|
|
13 |
description = """"""
|
14 |
article = """"""
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
GPU = device == "cuda"
|
18 |
INT16MAX = np.iinfo(np.int16).max
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
21 |
|
22 |
-
model_ids = ModelManager(verbose=False).list_models()
|
23 |
-
model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
24 |
-
model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]
|
25 |
-
model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
26 |
examples_pt = 'examples'
|
27 |
allowed_extentions = ['.mp3', '.wav']
|
28 |
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
|
@@ -81,6 +105,7 @@ def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_
|
|
81 |
# Lazy code... save it to a temp file to resample it while reading it for VC
|
82 |
tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)
|
83 |
speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)
|
|
|
84 |
|
85 |
|
86 |
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
|
|
13 |
description = """"""
|
14 |
article = """"""
|
15 |
|
16 |
+
class TTS_local(TTS):
|
17 |
+
def __init__(self, model_name=None, output_prefix: str = './', progress_bar: bool = True, gpu=False):
|
18 |
+
super().__init__(
|
19 |
+
model_name=None,
|
20 |
+
model_path=None,
|
21 |
+
config_path=None,
|
22 |
+
vocoder_path=None,
|
23 |
+
vocoder_config_path=None,
|
24 |
+
progress_bar=progress_bar,
|
25 |
+
gpu=False,
|
26 |
+
)
|
27 |
+
self.manager = ModelManager(models_file=self.get_models_file_path(), output_prefix=output_prefix, progress_bar=progress_bar, verbose=False)
|
28 |
+
if model_name is not None:
|
29 |
+
if "tts_models" in model_name or "coqui_studio" in model_name:
|
30 |
+
self.load_tts_model_by_name(model_name, gpu)
|
31 |
+
elif "voice_conversion_models" in model_name:
|
32 |
+
self.load_vc_model_by_name(model_name, gpu)
|
33 |
+
|
34 |
+
|
35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
GPU = device == "cuda"
|
37 |
INT16MAX = np.iinfo(np.int16).max
|
38 |
+
MODEL_DIR = 'C:/Users/Torch/AppData/Local'
|
39 |
+
MANAGER = ModelManager(verbose=False)
|
40 |
+
|
41 |
+
model_ids = MANAGER.list_models()
|
42 |
+
local_model_ids = [p.parts[-1].replace('--', '/') for p in (Path(MODEL_DIR) / 'tts').glob('*') if p.is_dir() and (p.parts[-1].replace('--', '/') in model_ids)]
|
43 |
+
model_tts_ids = [model for model in local_model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
44 |
+
model_vocoder_ids = [model for model in local_model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]
|
45 |
+
model_vconv_ids = [model for model in local_model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
46 |
|
47 |
+
VC_MODEL = TTS_local(model_name='voice_conversion_models/multilingual/vctk/freevc24',
|
48 |
+
output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)
|
49 |
|
|
|
|
|
|
|
|
|
50 |
examples_pt = 'examples'
|
51 |
allowed_extentions = ['.mp3', '.wav']
|
52 |
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
|
|
|
105 |
# Lazy code... save it to a temp file to resample it while reading it for VC
|
106 |
tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)
|
107 |
speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)
|
108 |
+
sample_rate = VC_MODEL.voice_converter.output_sample_rate
|
109 |
|
110 |
|
111 |
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
tts/voice_conversion_models--multilingual--vctk--freevc24/._config.json
ADDED
Binary file (386 Bytes). View file
|
|
tts/voice_conversion_models--multilingual--vctk--freevc24/._model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fa468ed77a9726751b4d321242e069c77dbcd8ecb2e30a212dc0f38f69b852a
|
3 |
+
size 230
|
tts/voice_conversion_models--multilingual--vctk--freevc24/._voice_conversion_models--multilingual--vctk--freevc24
ADDED
Binary file (330 Bytes). View file
|
|
tts/voice_conversion_models--multilingual--vctk--freevc24/__MACOSX/._voice_conversion_models--multilingual--vctk--freevc24
ADDED
Binary file (330 Bytes). View file
|
|
tts/voice_conversion_models--multilingual--vctk--freevc24/__MACOSX/voice_conversion_models--multilingual--vctk--freevc24/._config.json
ADDED
Binary file (386 Bytes). View file
|
|
tts/voice_conversion_models--multilingual--vctk--freevc24/__MACOSX/voice_conversion_models--multilingual--vctk--freevc24/._model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fa468ed77a9726751b4d321242e069c77dbcd8ecb2e30a212dc0f38f69b852a
|
3 |
+
size 230
|
tts/voice_conversion_models--multilingual--vctk--freevc24/config.json
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"output_path": "output",
|
3 |
+
"logger_uri": null,
|
4 |
+
"run_name": "run",
|
5 |
+
"project_name": null,
|
6 |
+
"run_description": "\ud83d\udc38Coqui trainer run.",
|
7 |
+
"print_step": 25,
|
8 |
+
"plot_step": 100,
|
9 |
+
"model_param_stats": false,
|
10 |
+
"wandb_entity": null,
|
11 |
+
"dashboard_logger": "tensorboard",
|
12 |
+
"log_model_step": null,
|
13 |
+
"save_step": 10000,
|
14 |
+
"save_n_checkpoints": 5,
|
15 |
+
"save_checkpoints": true,
|
16 |
+
"save_all_best": false,
|
17 |
+
"save_best_after": 10000,
|
18 |
+
"target_loss": null,
|
19 |
+
"print_eval": false,
|
20 |
+
"test_delay_epochs": 0,
|
21 |
+
"run_eval": true,
|
22 |
+
"run_eval_steps": null,
|
23 |
+
"distributed_backend": "nccl",
|
24 |
+
"distributed_url": "tcp://localhost:54321",
|
25 |
+
"mixed_precision": false,
|
26 |
+
"epochs": 1000,
|
27 |
+
"batch_size": 32,
|
28 |
+
"eval_batch_size": 16,
|
29 |
+
"grad_clip": [
|
30 |
+
1000,
|
31 |
+
1000
|
32 |
+
],
|
33 |
+
"scheduler_after_epoch": true,
|
34 |
+
"lr": 0.001,
|
35 |
+
"optimizer": "AdamW",
|
36 |
+
"optimizer_params": {
|
37 |
+
"betas": [
|
38 |
+
0.8,
|
39 |
+
0.99
|
40 |
+
],
|
41 |
+
"eps": 1e-09,
|
42 |
+
"weight_decay": 0.01
|
43 |
+
},
|
44 |
+
"lr_scheduler": null,
|
45 |
+
"lr_scheduler_params": {},
|
46 |
+
"use_grad_scaler": false,
|
47 |
+
"cudnn_enable": true,
|
48 |
+
"cudnn_deterministic": false,
|
49 |
+
"cudnn_benchmark": false,
|
50 |
+
"training_seed": 54321,
|
51 |
+
"model": "freevc",
|
52 |
+
"num_loader_workers": 0,
|
53 |
+
"num_eval_loader_workers": 0,
|
54 |
+
"use_noise_augment": false,
|
55 |
+
"audio": {
|
56 |
+
"max_wav_value": 32768.0,
|
57 |
+
"input_sample_rate": 16000,
|
58 |
+
"output_sample_rate": 24000,
|
59 |
+
"filter_length": 1280,
|
60 |
+
"hop_length": 320,
|
61 |
+
"win_length": 1280,
|
62 |
+
"n_mel_channels": 80,
|
63 |
+
"mel_fmin": 0.0,
|
64 |
+
"mel_fmax": null
|
65 |
+
},
|
66 |
+
"batch_group_size": 0,
|
67 |
+
"loss_masking": null,
|
68 |
+
"min_audio_len": 1,
|
69 |
+
"max_audio_len": Infinity,
|
70 |
+
"min_text_len": 1,
|
71 |
+
"max_text_len": Infinity,
|
72 |
+
"compute_f0": false,
|
73 |
+
"compute_energy": false,
|
74 |
+
"compute_linear_spec": true,
|
75 |
+
"precompute_num_workers": 0,
|
76 |
+
"start_by_longest": false,
|
77 |
+
"shuffle": false,
|
78 |
+
"drop_last": false,
|
79 |
+
"datasets": [
|
80 |
+
{
|
81 |
+
"formatter": "",
|
82 |
+
"dataset_name": "",
|
83 |
+
"path": "",
|
84 |
+
"meta_file_train": "",
|
85 |
+
"ignored_speakers": null,
|
86 |
+
"language": "",
|
87 |
+
"phonemizer": "",
|
88 |
+
"meta_file_val": "",
|
89 |
+
"meta_file_attn_mask": ""
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"test_sentences": [
|
93 |
+
[
|
94 |
+
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."
|
95 |
+
],
|
96 |
+
[
|
97 |
+
"Be a voice, not an echo."
|
98 |
+
],
|
99 |
+
[
|
100 |
+
"I'm sorry Dave. I'm afraid I can't do that."
|
101 |
+
],
|
102 |
+
[
|
103 |
+
"This cake is great. It's so delicious and moist."
|
104 |
+
],
|
105 |
+
[
|
106 |
+
"Prior to November 22, 1963."
|
107 |
+
]
|
108 |
+
],
|
109 |
+
"eval_split_max_size": null,
|
110 |
+
"eval_split_size": 0.01,
|
111 |
+
"use_speaker_weighted_sampler": false,
|
112 |
+
"speaker_weighted_sampler_alpha": 1.0,
|
113 |
+
"use_language_weighted_sampler": false,
|
114 |
+
"language_weighted_sampler_alpha": 1.0,
|
115 |
+
"use_length_weighted_sampler": false,
|
116 |
+
"length_weighted_sampler_alpha": 1.0,
|
117 |
+
"model_args": {
|
118 |
+
"spec_channels": 641,
|
119 |
+
"inter_channels": 192,
|
120 |
+
"hidden_channels": 192,
|
121 |
+
"filter_channels": 768,
|
122 |
+
"n_heads": 2,
|
123 |
+
"n_layers": 6,
|
124 |
+
"kernel_size": 3,
|
125 |
+
"p_dropout": 0.1,
|
126 |
+
"resblock": "1",
|
127 |
+
"resblock_kernel_sizes": [
|
128 |
+
3,
|
129 |
+
7,
|
130 |
+
11
|
131 |
+
],
|
132 |
+
"resblock_dilation_sizes": [
|
133 |
+
[
|
134 |
+
1,
|
135 |
+
3,
|
136 |
+
5
|
137 |
+
],
|
138 |
+
[
|
139 |
+
1,
|
140 |
+
3,
|
141 |
+
5
|
142 |
+
],
|
143 |
+
[
|
144 |
+
1,
|
145 |
+
3,
|
146 |
+
5
|
147 |
+
]
|
148 |
+
],
|
149 |
+
"upsample_rates": [
|
150 |
+
10,
|
151 |
+
6,
|
152 |
+
4,
|
153 |
+
2
|
154 |
+
],
|
155 |
+
"upsample_initial_channel": 512,
|
156 |
+
"upsample_kernel_sizes": [
|
157 |
+
16,
|
158 |
+
16,
|
159 |
+
4,
|
160 |
+
4
|
161 |
+
],
|
162 |
+
"n_layers_q": 3,
|
163 |
+
"use_spectral_norm": false,
|
164 |
+
"gin_channels": 256,
|
165 |
+
"ssl_dim": 1024,
|
166 |
+
"use_spk": true,
|
167 |
+
"num_spks": 0,
|
168 |
+
"segment_size": 8960
|
169 |
+
},
|
170 |
+
"lr_gen": 0.0002,
|
171 |
+
"lr_disc": 0.0002,
|
172 |
+
"lr_scheduler_gen": "ExponentialLR",
|
173 |
+
"lr_scheduler_gen_params": {
|
174 |
+
"gamma": 0.999875,
|
175 |
+
"last_epoch": -1
|
176 |
+
},
|
177 |
+
"lr_scheduler_disc": "ExponentialLR",
|
178 |
+
"lr_scheduler_disc_params": {
|
179 |
+
"gamma": 0.999875,
|
180 |
+
"last_epoch": -1
|
181 |
+
},
|
182 |
+
"kl_loss_alpha": 1.0,
|
183 |
+
"disc_loss_alpha": 1.0,
|
184 |
+
"gen_loss_alpha": 1.0,
|
185 |
+
"feat_loss_alpha": 1.0,
|
186 |
+
"mel_loss_alpha": 45.0,
|
187 |
+
"dur_loss_alpha": 1.0,
|
188 |
+
"speaker_encoder_loss_alpha": 1.0,
|
189 |
+
"return_wav": true,
|
190 |
+
"use_weighted_sampler": false,
|
191 |
+
"weighted_sampler_attrs": {},
|
192 |
+
"weighted_sampler_multipliers": {},
|
193 |
+
"r": 1,
|
194 |
+
"add_blank": true,
|
195 |
+
"num_speakers": 0,
|
196 |
+
"use_speaker_embedding": false,
|
197 |
+
"speakers_file": null,
|
198 |
+
"speaker_embedding_channels": 256,
|
199 |
+
"language_ids_file": null,
|
200 |
+
"use_language_embedding": false,
|
201 |
+
"use_d_vector_file": false,
|
202 |
+
"d_vector_file": null,
|
203 |
+
"d_vector_dim": null
|
204 |
+
}
|
tts/voice_conversion_models--multilingual--vctk--freevc24/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18d4ce44e7c803d675be1984b174e0f7bf05ce937419f19a818877e83f197007
|
3 |
+
size 1425242419
|