Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/Coqui.ai-Copy1-checkpoint.ipynb +386 -0
- .ipynb_checkpoints/Coqui.ai-checkpoint.ipynb +69 -25
- Coqui.ai-Copy1.ipynb +1139 -0
- Coqui.ai.ipynb +104 -8
- app.bak.py +160 -0
- app.py +29 -44
.ipynb_checkpoints/Coqui.ai-Copy1-checkpoint.ipynb
ADDED
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "14a326bb",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import torch\n",
|
13 |
+
"import torch.nn.functional as F\n",
|
14 |
+
"from pathlib import Path\n",
|
15 |
+
"\n",
|
16 |
+
"from TTS.api import TTS\n",
|
17 |
+
"from TTS.utils.manage import ModelManager"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 17,
|
23 |
+
"id": "2cfd77d1",
|
24 |
+
"metadata": {
|
25 |
+
"scrolled": false
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"name": "stdout",
|
30 |
+
"output_type": "stream",
|
31 |
+
"text": [
|
32 |
+
" > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded.\n",
|
33 |
+
" > Model's license - MIT\n",
|
34 |
+
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
35 |
+
" > Using model: freevc\n",
|
36 |
+
" > Loading pretrained speaker encoder model ...\n",
|
37 |
+
"Loaded the voice encoder model on cpu in 0.02 seconds.\n",
|
38 |
+
"Running on local URL: http://127.0.0.1:7873\n",
|
39 |
+
"\n",
|
40 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"text/html": [
|
46 |
+
"<div><iframe src=\"http://127.0.0.1:7873/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
47 |
+
],
|
48 |
+
"text/plain": [
|
49 |
+
"<IPython.core.display.HTML object>"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
"metadata": {},
|
53 |
+
"output_type": "display_data"
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"data": {
|
57 |
+
"text/plain": []
|
58 |
+
},
|
59 |
+
"execution_count": 17,
|
60 |
+
"metadata": {},
|
61 |
+
"output_type": "execute_result"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"name": "stdout",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
68 |
+
" > Model's license - apache 2.0\n",
|
69 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
70 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
71 |
+
" > Model's license - apache 2.0\n",
|
72 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
73 |
+
" > Using model: Tacotron2\n",
|
74 |
+
" > Setting up Audio Processor...\n",
|
75 |
+
" | > sample_rate:22050\n",
|
76 |
+
" | > resample:False\n",
|
77 |
+
" | > num_mels:80\n",
|
78 |
+
" | > log_func:np.log10\n",
|
79 |
+
" | > min_level_db:-100\n",
|
80 |
+
" | > frame_shift_ms:None\n",
|
81 |
+
" | > frame_length_ms:None\n",
|
82 |
+
" | > ref_level_db:20\n",
|
83 |
+
" | > fft_size:1024\n",
|
84 |
+
" | > power:1.5\n",
|
85 |
+
" | > preemphasis:0.0\n",
|
86 |
+
" | > griffin_lim_iters:60\n",
|
87 |
+
" | > signal_norm:True\n",
|
88 |
+
" | > symmetric_norm:True\n",
|
89 |
+
" | > mel_fmin:50.0\n",
|
90 |
+
" | > mel_fmax:7600.0\n",
|
91 |
+
" | > pitch_fmin:0.0\n",
|
92 |
+
" | > pitch_fmax:640.0\n",
|
93 |
+
" | > spec_gain:1.0\n",
|
94 |
+
" | > stft_pad_mode:reflect\n",
|
95 |
+
" | > max_norm:4.0\n",
|
96 |
+
" | > clip_norm:True\n",
|
97 |
+
" | > do_trim_silence:True\n",
|
98 |
+
" | > trim_db:60\n",
|
99 |
+
" | > do_sound_norm:False\n",
|
100 |
+
" | > do_amp_to_db_linear:True\n",
|
101 |
+
" | > do_amp_to_db_mel:True\n",
|
102 |
+
" | > do_rms_norm:False\n",
|
103 |
+
" | > db_level:None\n",
|
104 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
105 |
+
" | > base:10\n",
|
106 |
+
" | > hop_length:256\n",
|
107 |
+
" | > win_length:1024\n",
|
108 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
109 |
+
" > Vocoder Model: univnet\n",
|
110 |
+
" > Setting up Audio Processor...\n",
|
111 |
+
" | > sample_rate:22050\n",
|
112 |
+
" | > resample:False\n",
|
113 |
+
" | > num_mels:80\n",
|
114 |
+
" | > log_func:np.log10\n",
|
115 |
+
" | > min_level_db:-100\n",
|
116 |
+
" | > frame_shift_ms:None\n",
|
117 |
+
" | > frame_length_ms:None\n",
|
118 |
+
" | > ref_level_db:20\n",
|
119 |
+
" | > fft_size:1024\n",
|
120 |
+
" | > power:1.5\n",
|
121 |
+
" | > preemphasis:0.0\n",
|
122 |
+
" | > griffin_lim_iters:60\n",
|
123 |
+
" | > signal_norm:True\n",
|
124 |
+
" | > symmetric_norm:True\n",
|
125 |
+
" | > mel_fmin:50.0\n",
|
126 |
+
" | > mel_fmax:7600.0\n",
|
127 |
+
" | > pitch_fmin:1.0\n",
|
128 |
+
" | > pitch_fmax:640.0\n",
|
129 |
+
" | > spec_gain:1.0\n",
|
130 |
+
" | > stft_pad_mode:reflect\n",
|
131 |
+
" | > max_norm:4.0\n",
|
132 |
+
" | > clip_norm:True\n",
|
133 |
+
" | > do_trim_silence:True\n",
|
134 |
+
" | > trim_db:60\n",
|
135 |
+
" | > do_sound_norm:False\n",
|
136 |
+
" | > do_amp_to_db_linear:True\n",
|
137 |
+
" | > do_amp_to_db_mel:True\n",
|
138 |
+
" | > do_rms_norm:False\n",
|
139 |
+
" | > db_level:None\n",
|
140 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
141 |
+
" | > base:10\n",
|
142 |
+
" | > hop_length:256\n",
|
143 |
+
" | > win_length:1024\n",
|
144 |
+
" > Generator Model: univnet_generator\n",
|
145 |
+
" > Discriminator Model: univnet_discriminator\n",
|
146 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
147 |
+
"language: \n",
|
148 |
+
"speaker: \n",
|
149 |
+
"voice cloning with the voice conversion model\n",
|
150 |
+
" > Text splitted to sentences.\n",
|
151 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
152 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
153 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
154 |
+
" > Processing time: 3.2769999504089355\n",
|
155 |
+
" > Real-time factor: 0.37722315040572285\n",
|
156 |
+
" > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded.\n",
|
157 |
+
" > Model's license - MIT\n",
|
158 |
+
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
159 |
+
" > Using model: freevc\n",
|
160 |
+
" > Loading pretrained speaker encoder model ...\n",
|
161 |
+
"Loaded the voice encoder model on cpu in 0.02 seconds.\n",
|
162 |
+
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
163 |
+
"language: \n",
|
164 |
+
"speaker: \n",
|
165 |
+
"voice cloning with the voice conversion model\n",
|
166 |
+
" > Text splitted to sentences.\n",
|
167 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
168 |
+
" > Processing time: 2.8229997158050537\n",
|
169 |
+
" > Real-time factor: 0.3249621185552823\n",
|
170 |
+
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
171 |
+
"language: \n",
|
172 |
+
"speaker: \n",
|
173 |
+
"voice cloning with the voice conversion model\n",
|
174 |
+
" > Text splitted to sentences.\n",
|
175 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
176 |
+
" > Processing time: 2.858999729156494\n",
|
177 |
+
" > Real-time factor: 0.32910616452921765\n",
|
178 |
+
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
179 |
+
"language: \n",
|
180 |
+
"speaker: \n",
|
181 |
+
"voice cloning with the voice conversion model\n",
|
182 |
+
" > Text splitted to sentences.\n",
|
183 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
184 |
+
" > Processing time: 2.8419997692108154\n",
|
185 |
+
" > Real-time factor: 0.3271492592669274\n",
|
186 |
+
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
187 |
+
"language: \n",
|
188 |
+
"speaker: \n",
|
189 |
+
"voice cloning with the voice conversion model\n",
|
190 |
+
" > Text splitted to sentences.\n",
|
191 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
192 |
+
" > Processing time: 2.922999858856201\n",
|
193 |
+
" > Real-time factor: 0.3364733695695124\n"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"name": "stderr",
|
198 |
+
"output_type": "stream",
|
199 |
+
"text": [
|
200 |
+
"Traceback (most recent call last):\n",
|
201 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\gradio\\routes.py\", line 434, in run_predict\n",
|
202 |
+
" event_data=event_data,\n",
|
203 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\gradio\\blocks.py\", line 1324, in process_api\n",
|
204 |
+
" fn_index, inputs, iterator, request, event_id, event_data\n",
|
205 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\gradio\\blocks.py\", line 1052, in call_function\n",
|
206 |
+
" fn, *processed_input, limiter=self.limiter\n",
|
207 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\to_thread.py\", line 34, in run_sync\n",
|
208 |
+
" func, *args, cancellable=cancellable, limiter=limiter\n",
|
209 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
|
210 |
+
" return await future\n",
|
211 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 807, in run\n",
|
212 |
+
" result = context.run(func, *args)\n",
|
213 |
+
"TypeError: voice_clone() takes 2 positional arguments but 3 were given\n",
|
214 |
+
"Traceback (most recent call last):\n",
|
215 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\gradio\\routes.py\", line 434, in run_predict\n",
|
216 |
+
" event_data=event_data,\n",
|
217 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\gradio\\blocks.py\", line 1324, in process_api\n",
|
218 |
+
" fn_index, inputs, iterator, request, event_id, event_data\n",
|
219 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\gradio\\blocks.py\", line 1052, in call_function\n",
|
220 |
+
" fn, *processed_input, limiter=self.limiter\n",
|
221 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\to_thread.py\", line 34, in run_sync\n",
|
222 |
+
" func, *args, cancellable=cancellable, limiter=limiter\n",
|
223 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
|
224 |
+
" return await future\n",
|
225 |
+
" File \"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 807, in run\n",
|
226 |
+
" result = context.run(func, *args)\n",
|
227 |
+
"TypeError: voice_clone() takes 2 positional arguments but 3 were given\n"
|
228 |
+
]
|
229 |
+
}
|
230 |
+
],
|
231 |
+
"source": [
|
232 |
+
"title = \"\"\n",
|
233 |
+
"description = \"\"\"\"\"\"\n",
|
234 |
+
"article = \"\"\"\"\"\"\n",
|
235 |
+
"\n",
|
236 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
237 |
+
"GPU = device == \"cuda\"\n",
|
238 |
+
"INT16MAX = np.iinfo(np.int16).max\n",
|
239 |
+
"VC_MODEL = TTS(model_name='voice_conversion_models/multilingual/vctk/freevc24', progress_bar=False, gpu=GPU)\n",
|
240 |
+
"\n",
|
241 |
+
"\n",
|
242 |
+
"model_ids = ModelManager(verbose=False).list_models()\n",
|
243 |
+
"model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
244 |
+
"model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
245 |
+
"model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
246 |
+
"examples_pt = 'examples'\n",
|
247 |
+
"allowed_extentions = ['.mp3', '.wav']\n",
|
248 |
+
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
249 |
+
"verse = \"\"\"Mary had a little lamb,\n",
|
250 |
+
"Its fleece was white as snow.\n",
|
251 |
+
"Everywhere the child went,\n",
|
252 |
+
"The little lamb was sure to go.\"\"\"\n",
|
253 |
+
"\n",
|
254 |
+
"\n",
|
255 |
+
"def on_model_tts_select(model_name):\n",
|
256 |
+
" tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
257 |
+
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
258 |
+
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
259 |
+
" language = languages[0]\n",
|
260 |
+
" speaker = speakers[0]\n",
|
261 |
+
" return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\\\n",
|
262 |
+
" gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)\n",
|
263 |
+
"\n",
|
264 |
+
"\n",
|
265 |
+
"def on_voicedropdown(x):\n",
|
266 |
+
" return examples[x]\n",
|
267 |
+
"\n",
|
268 |
+
"\n",
|
269 |
+
"def voice_clone(source_wav, target_wav):\n",
|
270 |
+
" print(f'model: {VC_MODEL.model_name}\\nsource_wav: {source_wav}\\ntarget_wav: {target_wav}')\n",
|
271 |
+
" sample_rate = VC_MODEL.voice_converter.output_sample_rate\n",
|
272 |
+
" if vc_model is None or source_wav is None or target_wav is None:\n",
|
273 |
+
" return (sample_rate, np.zeros(0).astype(np.int16))\n",
|
274 |
+
"\n",
|
275 |
+
" speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)\n",
|
276 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
277 |
+
" return (sample_rate, speech)\n",
|
278 |
+
"\n",
|
279 |
+
"\n",
|
280 |
+
"def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):\n",
|
281 |
+
" if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):\n",
|
282 |
+
" return (16000, np.zeros(0).astype(np.int16))\n",
|
283 |
+
"\n",
|
284 |
+
" sample_rate = tts_model.synthesizer.output_sample_rate\n",
|
285 |
+
" if tts_model.is_multi_speaker:\n",
|
286 |
+
" speaker = {s.replace('\\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting\n",
|
287 |
+
" print(f'model: {tts_model.model_name}\\nlanguage: {language}\\nspeaker: {speaker}')\n",
|
288 |
+
"\n",
|
289 |
+
" language = None if language == '' else language\n",
|
290 |
+
" speaker = None if speaker == '' else speaker\n",
|
291 |
+
" if use_original_voice:\n",
|
292 |
+
" print('Using original voice')\n",
|
293 |
+
" speech = tts_model.tts(text, language=language, speaker=speaker) \n",
|
294 |
+
" elif tts_model.synthesizer.tts_model.speaker_manager:\n",
|
295 |
+
" print('voice cloning with the tts')\n",
|
296 |
+
" speech = tts_model.tts(text, language=language, speaker_wav=target_wav)\n",
|
297 |
+
" else:\n",
|
298 |
+
" print('voice cloning with the voice conversion model')\n",
|
299 |
+
" speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)\n",
|
300 |
+
"\n",
|
301 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
302 |
+
" return (sample_rate, speech)\n",
|
303 |
+
"\n",
|
304 |
+
"\n",
|
305 |
+
"with gr.Blocks() as demo:\n",
|
306 |
+
" tts_model = gr.State(None)\n",
|
307 |
+
" vc_model = gr.State(None)\n",
|
308 |
+
" def activate(*args):\n",
|
309 |
+
" return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)\n",
|
310 |
+
" def deactivate(*args):\n",
|
311 |
+
" return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)\n",
|
312 |
+
"\n",
|
313 |
+
" \n",
|
314 |
+
" gr.Markdown(description)\n",
|
315 |
+
"\n",
|
316 |
+
" with gr.Row(equal_height=True):\n",
|
317 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
318 |
+
" model_tts_dropdown = gr.Dropdown(model_tts_ids, value=None, label='Text-to-speech model', interactive=True)\n",
|
319 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
320 |
+
" language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)\n",
|
321 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
322 |
+
" speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)\n",
|
323 |
+
" \n",
|
324 |
+
" with gr.Accordion(\"Target voice\", open=False) as accordion:\n",
|
325 |
+
" gr.Markdown(\"Upload target voice...\")\n",
|
326 |
+
" with gr.Row(equal_height=True):\n",
|
327 |
+
" voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')\n",
|
328 |
+
" voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)\n",
|
329 |
+
"\n",
|
330 |
+
" with gr.Row(equal_height=True):\n",
|
331 |
+
" with gr.Column(scale=2):\n",
|
332 |
+
" with gr.Row(equal_height=True):\n",
|
333 |
+
" with gr.Column():\n",
|
334 |
+
" text_to_convert = gr.Textbox(verse)\n",
|
335 |
+
" orig_voice = gr.Checkbox(label='Use original voice')\n",
|
336 |
+
" voice_to_convert = gr.Audio(label=\"Upload voice to convert\", source='upload', type='filepath')\n",
|
337 |
+
" with gr.Row(equal_height=True):\n",
|
338 |
+
" button_text = gr.Button('Text to speech', interactive=True)\n",
|
339 |
+
" button_audio = gr.Button('Convert audio', interactive=True)\n",
|
340 |
+
" with gr.Row(equal_height=True):\n",
|
341 |
+
" speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False) \n",
|
342 |
+
" \n",
|
343 |
+
" # actions\n",
|
344 |
+
" model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
345 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
346 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
347 |
+
" voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
348 |
+
" then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\\\n",
|
349 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
350 |
+
"\n",
|
351 |
+
" button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
352 |
+
" then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice], \n",
|
353 |
+
" outputs=speech).\\\n",
|
354 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
355 |
+
"\n",
|
356 |
+
" button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
357 |
+
" then(fn=voice_clone, inputs=[voice_to_convert, voice_upload], outputs=speech).\\\n",
|
358 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
359 |
+
" \n",
|
360 |
+
" gr.HTML(article)\n",
|
361 |
+
"demo.launch(share=False)"
|
362 |
+
]
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"metadata": {
|
366 |
+
"kernelspec": {
|
367 |
+
"display_name": "Python 3",
|
368 |
+
"language": "python",
|
369 |
+
"name": "python3"
|
370 |
+
},
|
371 |
+
"language_info": {
|
372 |
+
"codemirror_mode": {
|
373 |
+
"name": "ipython",
|
374 |
+
"version": 3
|
375 |
+
},
|
376 |
+
"file_extension": ".py",
|
377 |
+
"mimetype": "text/x-python",
|
378 |
+
"name": "python",
|
379 |
+
"nbconvert_exporter": "python",
|
380 |
+
"pygments_lexer": "ipython3",
|
381 |
+
"version": "3.7.9"
|
382 |
+
}
|
383 |
+
},
|
384 |
+
"nbformat": 4,
|
385 |
+
"nbformat_minor": 5
|
386 |
+
}
|
.ipynb_checkpoints/Coqui.ai-checkpoint.ipynb
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
-
"id": "
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
@@ -19,8 +19,8 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
-
"id": "
|
24 |
"metadata": {
|
25 |
"scrolled": false
|
26 |
},
|
@@ -29,7 +29,7 @@
|
|
29 |
"name": "stdout",
|
30 |
"output_type": "stream",
|
31 |
"text": [
|
32 |
-
"Running on local URL: http://127.0.0.1:
|
33 |
"\n",
|
34 |
"To create a public link, set `share=True` in `launch()`.\n"
|
35 |
]
|
@@ -37,7 +37,7 @@
|
|
37 |
{
|
38 |
"data": {
|
39 |
"text/html": [
|
40 |
-
"<div><iframe src=\"http://127.0.0.1:
|
41 |
],
|
42 |
"text/plain": [
|
43 |
"<IPython.core.display.HTML object>"
|
@@ -50,7 +50,7 @@
|
|
50 |
"data": {
|
51 |
"text/plain": []
|
52 |
},
|
53 |
-
"execution_count":
|
54 |
"metadata": {},
|
55 |
"output_type": "execute_result"
|
56 |
},
|
@@ -138,22 +138,27 @@
|
|
138 |
" | > win_length:1024\n",
|
139 |
" > Generator Model: univnet_generator\n",
|
140 |
" > Discriminator Model: univnet_discriminator\n",
|
141 |
-
"Passing through TTS model tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
142 |
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
143 |
"language: \n",
|
144 |
"speaker: \n",
|
145 |
-
"
|
146 |
" > Text splitted to sentences.\n",
|
147 |
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
148 |
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
149 |
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
150 |
-
" > Processing time: 3.
|
151 |
-
" > Real-time factor: 0.
|
152 |
-
"
|
153 |
-
" >
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
" > Model's license - apache 2.0\n",
|
155 |
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
156 |
-
" > vocoder_models/en/
|
157 |
" > Model's license - apache 2.0\n",
|
158 |
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
159 |
" > Using model: Tacotron2\n",
|
@@ -162,19 +167,19 @@
|
|
162 |
" | > resample:False\n",
|
163 |
" | > num_mels:80\n",
|
164 |
" | > log_func:np.log10\n",
|
165 |
-
" | > min_level_db:-
|
166 |
" | > frame_shift_ms:None\n",
|
167 |
" | > frame_length_ms:None\n",
|
168 |
-
" | > ref_level_db:
|
169 |
" | > fft_size:1024\n",
|
170 |
-
" | > power:1.
|
171 |
-
" | > preemphasis:0.
|
172 |
" | > griffin_lim_iters:60\n",
|
173 |
" | > signal_norm:True\n",
|
174 |
" | > symmetric_norm:True\n",
|
175 |
-
" | > mel_fmin:0\n",
|
176 |
-
" | > mel_fmax:
|
177 |
-
" | > pitch_fmin:
|
178 |
" | > pitch_fmax:640.0\n",
|
179 |
" | > spec_gain:1.0\n",
|
180 |
" | > stft_pad_mode:reflect\n",
|
@@ -187,19 +192,58 @@
|
|
187 |
" | > do_amp_to_db_mel:True\n",
|
188 |
" | > do_rms_norm:False\n",
|
189 |
" | > db_level:None\n",
|
190 |
-
" | > stats_path:
|
191 |
" | > base:10\n",
|
192 |
" | > hop_length:256\n",
|
193 |
" | > win_length:1024\n",
|
194 |
" > Model's reduction rate `r` is set to: 2\n",
|
195 |
-
" > Vocoder Model:
|
196 |
-
"
|
197 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
"language: \n",
|
199 |
"speaker: \n",
|
200 |
"Using original voice\n",
|
201 |
" > Text splitted to sentences.\n",
|
202 |
-
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n"
|
|
|
|
|
|
|
|
|
203 |
]
|
204 |
}
|
205 |
],
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
+
"id": "e65fcd73",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
+
"id": "f902a92c",
|
24 |
"metadata": {
|
25 |
"scrolled": false
|
26 |
},
|
|
|
29 |
"name": "stdout",
|
30 |
"output_type": "stream",
|
31 |
"text": [
|
32 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
33 |
"\n",
|
34 |
"To create a public link, set `share=True` in `launch()`.\n"
|
35 |
]
|
|
|
37 |
{
|
38 |
"data": {
|
39 |
"text/html": [
|
40 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
41 |
],
|
42 |
"text/plain": [
|
43 |
"<IPython.core.display.HTML object>"
|
|
|
50 |
"data": {
|
51 |
"text/plain": []
|
52 |
},
|
53 |
+
"execution_count": 2,
|
54 |
"metadata": {},
|
55 |
"output_type": "execute_result"
|
56 |
},
|
|
|
138 |
" | > win_length:1024\n",
|
139 |
" > Generator Model: univnet_generator\n",
|
140 |
" > Discriminator Model: univnet_discriminator\n",
|
|
|
141 |
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
142 |
"language: \n",
|
143 |
"speaker: \n",
|
144 |
+
"voice cloning with the voice conversion model\n",
|
145 |
" > Text splitted to sentences.\n",
|
146 |
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
147 |
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
148 |
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
149 |
+
" > Processing time: 3.4810001850128174\n",
|
150 |
+
" > Real-time factor: 0.400706095887971\n",
|
151 |
+
" > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded.\n",
|
152 |
+
" > Model's license - MIT\n",
|
153 |
+
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
154 |
+
" > Using model: freevc\n",
|
155 |
+
" > Loading pretrained speaker encoder model ...\n",
|
156 |
+
"Loaded the voice encoder model on cpu in 0.09 seconds.\n",
|
157 |
+
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
158 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
159 |
" > Model's license - apache 2.0\n",
|
160 |
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
161 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
162 |
" > Model's license - apache 2.0\n",
|
163 |
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
164 |
" > Using model: Tacotron2\n",
|
|
|
167 |
" | > resample:False\n",
|
168 |
" | > num_mels:80\n",
|
169 |
" | > log_func:np.log10\n",
|
170 |
+
" | > min_level_db:-100\n",
|
171 |
" | > frame_shift_ms:None\n",
|
172 |
" | > frame_length_ms:None\n",
|
173 |
+
" | > ref_level_db:20\n",
|
174 |
" | > fft_size:1024\n",
|
175 |
+
" | > power:1.5\n",
|
176 |
+
" | > preemphasis:0.0\n",
|
177 |
" | > griffin_lim_iters:60\n",
|
178 |
" | > signal_norm:True\n",
|
179 |
" | > symmetric_norm:True\n",
|
180 |
+
" | > mel_fmin:50.0\n",
|
181 |
+
" | > mel_fmax:7600.0\n",
|
182 |
+
" | > pitch_fmin:0.0\n",
|
183 |
" | > pitch_fmax:640.0\n",
|
184 |
" | > spec_gain:1.0\n",
|
185 |
" | > stft_pad_mode:reflect\n",
|
|
|
192 |
" | > do_amp_to_db_mel:True\n",
|
193 |
" | > do_rms_norm:False\n",
|
194 |
" | > db_level:None\n",
|
195 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
196 |
" | > base:10\n",
|
197 |
" | > hop_length:256\n",
|
198 |
" | > win_length:1024\n",
|
199 |
" > Model's reduction rate `r` is set to: 2\n",
|
200 |
+
" > Vocoder Model: univnet\n",
|
201 |
+
" > Setting up Audio Processor...\n",
|
202 |
+
" | > sample_rate:22050\n",
|
203 |
+
" | > resample:False\n",
|
204 |
+
" | > num_mels:80\n",
|
205 |
+
" | > log_func:np.log10\n",
|
206 |
+
" | > min_level_db:-100\n",
|
207 |
+
" | > frame_shift_ms:None\n",
|
208 |
+
" | > frame_length_ms:None\n",
|
209 |
+
" | > ref_level_db:20\n",
|
210 |
+
" | > fft_size:1024\n",
|
211 |
+
" | > power:1.5\n",
|
212 |
+
" | > preemphasis:0.0\n",
|
213 |
+
" | > griffin_lim_iters:60\n",
|
214 |
+
" | > signal_norm:True\n",
|
215 |
+
" | > symmetric_norm:True\n",
|
216 |
+
" | > mel_fmin:50.0\n",
|
217 |
+
" | > mel_fmax:7600.0\n",
|
218 |
+
" | > pitch_fmin:1.0\n",
|
219 |
+
" | > pitch_fmax:640.0\n",
|
220 |
+
" | > spec_gain:1.0\n",
|
221 |
+
" | > stft_pad_mode:reflect\n",
|
222 |
+
" | > max_norm:4.0\n",
|
223 |
+
" | > clip_norm:True\n",
|
224 |
+
" | > do_trim_silence:True\n",
|
225 |
+
" | > trim_db:60\n",
|
226 |
+
" | > do_sound_norm:False\n",
|
227 |
+
" | > do_amp_to_db_linear:True\n",
|
228 |
+
" | > do_amp_to_db_mel:True\n",
|
229 |
+
" | > do_rms_norm:False\n",
|
230 |
+
" | > db_level:None\n",
|
231 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
232 |
+
" | > base:10\n",
|
233 |
+
" | > hop_length:256\n",
|
234 |
+
" | > win_length:1024\n",
|
235 |
+
" > Generator Model: univnet_generator\n",
|
236 |
+
" > Discriminator Model: univnet_discriminator\n",
|
237 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
238 |
"language: \n",
|
239 |
"speaker: \n",
|
240 |
"Using original voice\n",
|
241 |
" > Text splitted to sentences.\n",
|
242 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
243 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
244 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
245 |
+
" > Processing time: 2.931999921798706\n",
|
246 |
+
" > Real-time factor: 0.3375093879242267\n"
|
247 |
]
|
248 |
}
|
249 |
],
|
Coqui.ai-Copy1.ipynb
ADDED
@@ -0,0 +1,1139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"id": "80ca0f5c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import gradio as gr\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import torch\n",
|
13 |
+
"import torch.nn.functional as F\n",
|
14 |
+
"from pathlib import Path\n",
|
15 |
+
"import tempfile\n",
|
16 |
+
"\n",
|
17 |
+
"from TTS.api import TTS\n",
|
18 |
+
"from TTS.utils.manage import ModelManager"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 6,
|
24 |
+
"id": "4ad622cb",
|
25 |
+
"metadata": {
|
26 |
+
"scrolled": false
|
27 |
+
},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"name": "stdout",
|
31 |
+
"output_type": "stream",
|
32 |
+
"text": [
|
33 |
+
" > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded.\n",
|
34 |
+
" > Model's license - MIT\n",
|
35 |
+
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
36 |
+
" > Using model: freevc\n",
|
37 |
+
" > Loading pretrained speaker encoder model ...\n",
|
38 |
+
"Loaded the voice encoder model on cpu in 0.01 seconds.\n",
|
39 |
+
"Running on local URL: http://127.0.0.1:7863\n",
|
40 |
+
"\n",
|
41 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"data": {
|
46 |
+
"text/html": [
|
47 |
+
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
48 |
+
],
|
49 |
+
"text/plain": [
|
50 |
+
"<IPython.core.display.HTML object>"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
"metadata": {},
|
54 |
+
"output_type": "display_data"
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"data": {
|
58 |
+
"text/plain": []
|
59 |
+
},
|
60 |
+
"execution_count": 6,
|
61 |
+
"metadata": {},
|
62 |
+
"output_type": "execute_result"
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"name": "stdout",
|
66 |
+
"output_type": "stream",
|
67 |
+
"text": [
|
68 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
69 |
+
" > Model's license - apache 2.0\n",
|
70 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
71 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
72 |
+
" > Model's license - apache 2.0\n",
|
73 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
74 |
+
" > Using model: Tacotron2\n",
|
75 |
+
" > Setting up Audio Processor...\n",
|
76 |
+
" | > sample_rate:22050\n",
|
77 |
+
" | > resample:False\n",
|
78 |
+
" | > num_mels:80\n",
|
79 |
+
" | > log_func:np.log10\n",
|
80 |
+
" | > min_level_db:-100\n",
|
81 |
+
" | > frame_shift_ms:None\n",
|
82 |
+
" | > frame_length_ms:None\n",
|
83 |
+
" | > ref_level_db:20\n",
|
84 |
+
" | > fft_size:1024\n",
|
85 |
+
" | > power:1.5\n",
|
86 |
+
" | > preemphasis:0.0\n",
|
87 |
+
" | > griffin_lim_iters:60\n",
|
88 |
+
" | > signal_norm:True\n",
|
89 |
+
" | > symmetric_norm:True\n",
|
90 |
+
" | > mel_fmin:50.0\n",
|
91 |
+
" | > mel_fmax:7600.0\n",
|
92 |
+
" | > pitch_fmin:0.0\n",
|
93 |
+
" | > pitch_fmax:640.0\n",
|
94 |
+
" | > spec_gain:1.0\n",
|
95 |
+
" | > stft_pad_mode:reflect\n",
|
96 |
+
" | > max_norm:4.0\n",
|
97 |
+
" | > clip_norm:True\n",
|
98 |
+
" | > do_trim_silence:True\n",
|
99 |
+
" | > trim_db:60\n",
|
100 |
+
" | > do_sound_norm:False\n",
|
101 |
+
" | > do_amp_to_db_linear:True\n",
|
102 |
+
" | > do_amp_to_db_mel:True\n",
|
103 |
+
" | > do_rms_norm:False\n",
|
104 |
+
" | > db_level:None\n",
|
105 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
106 |
+
" | > base:10\n",
|
107 |
+
" | > hop_length:256\n",
|
108 |
+
" | > win_length:1024\n",
|
109 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
110 |
+
" > Vocoder Model: univnet\n",
|
111 |
+
" > Setting up Audio Processor...\n",
|
112 |
+
" | > sample_rate:22050\n",
|
113 |
+
" | > resample:False\n",
|
114 |
+
" | > num_mels:80\n",
|
115 |
+
" | > log_func:np.log10\n",
|
116 |
+
" | > min_level_db:-100\n",
|
117 |
+
" | > frame_shift_ms:None\n",
|
118 |
+
" | > frame_length_ms:None\n",
|
119 |
+
" | > ref_level_db:20\n",
|
120 |
+
" | > fft_size:1024\n",
|
121 |
+
" | > power:1.5\n",
|
122 |
+
" | > preemphasis:0.0\n",
|
123 |
+
" | > griffin_lim_iters:60\n",
|
124 |
+
" | > signal_norm:True\n",
|
125 |
+
" | > symmetric_norm:True\n",
|
126 |
+
" | > mel_fmin:50.0\n",
|
127 |
+
" | > mel_fmax:7600.0\n",
|
128 |
+
" | > pitch_fmin:1.0\n",
|
129 |
+
" | > pitch_fmax:640.0\n",
|
130 |
+
" | > spec_gain:1.0\n",
|
131 |
+
" | > stft_pad_mode:reflect\n",
|
132 |
+
" | > max_norm:4.0\n",
|
133 |
+
" | > clip_norm:True\n",
|
134 |
+
" | > do_trim_silence:True\n",
|
135 |
+
" | > trim_db:60\n",
|
136 |
+
" | > do_sound_norm:False\n",
|
137 |
+
" | > do_amp_to_db_linear:True\n",
|
138 |
+
" | > do_amp_to_db_mel:True\n",
|
139 |
+
" | > do_rms_norm:False\n",
|
140 |
+
" | > db_level:None\n",
|
141 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
142 |
+
" | > base:10\n",
|
143 |
+
" | > hop_length:256\n",
|
144 |
+
" | > win_length:1024\n",
|
145 |
+
" > Generator Model: univnet_generator\n",
|
146 |
+
" > Discriminator Model: univnet_discriminator\n",
|
147 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
148 |
+
"language: \n",
|
149 |
+
"speaker: \n",
|
150 |
+
"voice cloning with the voice conversion model\n",
|
151 |
+
" > Text splitted to sentences.\n",
|
152 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
153 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
154 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
155 |
+
" > Processing time: 3.3410003185272217\n",
|
156 |
+
" > Real-time factor: 0.38459038289093944\n",
|
157 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
158 |
+
"language: \n",
|
159 |
+
"speaker: \n",
|
160 |
+
"voice cloning with the voice conversion model\n",
|
161 |
+
" > Text splitted to sentences.\n",
|
162 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
163 |
+
" > Processing time: 2.9179999828338623\n",
|
164 |
+
" > Real-time factor: 0.3358978221135079\n",
|
165 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
166 |
+
" > Model's license - apache 2.0\n",
|
167 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
168 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
169 |
+
" > Model's license - apache 2.0\n",
|
170 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
171 |
+
" > Using model: Tacotron2\n",
|
172 |
+
" > Setting up Audio Processor...\n",
|
173 |
+
" | > sample_rate:22050\n",
|
174 |
+
" | > resample:False\n",
|
175 |
+
" | > num_mels:80\n",
|
176 |
+
" | > log_func:np.log10\n",
|
177 |
+
" | > min_level_db:-100\n",
|
178 |
+
" | > frame_shift_ms:None\n",
|
179 |
+
" | > frame_length_ms:None\n",
|
180 |
+
" | > ref_level_db:20\n",
|
181 |
+
" | > fft_size:1024\n",
|
182 |
+
" | > power:1.5\n",
|
183 |
+
" | > preemphasis:0.0\n",
|
184 |
+
" | > griffin_lim_iters:60\n",
|
185 |
+
" | > signal_norm:True\n",
|
186 |
+
" | > symmetric_norm:True\n",
|
187 |
+
" | > mel_fmin:50.0\n",
|
188 |
+
" | > mel_fmax:7600.0\n",
|
189 |
+
" | > pitch_fmin:0.0\n",
|
190 |
+
" | > pitch_fmax:640.0\n",
|
191 |
+
" | > spec_gain:1.0\n",
|
192 |
+
" | > stft_pad_mode:reflect\n",
|
193 |
+
" | > max_norm:4.0\n",
|
194 |
+
" | > clip_norm:True\n",
|
195 |
+
" | > do_trim_silence:True\n",
|
196 |
+
" | > trim_db:60\n",
|
197 |
+
" | > do_sound_norm:False\n",
|
198 |
+
" | > do_amp_to_db_linear:True\n",
|
199 |
+
" | > do_amp_to_db_mel:True\n",
|
200 |
+
" | > do_rms_norm:False\n",
|
201 |
+
" | > db_level:None\n",
|
202 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
203 |
+
" | > base:10\n",
|
204 |
+
" | > hop_length:256\n",
|
205 |
+
" | > win_length:1024\n",
|
206 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
207 |
+
" > Vocoder Model: univnet\n",
|
208 |
+
" > Setting up Audio Processor...\n",
|
209 |
+
" | > sample_rate:22050\n",
|
210 |
+
" | > resample:False\n",
|
211 |
+
" | > num_mels:80\n",
|
212 |
+
" | > log_func:np.log10\n",
|
213 |
+
" | > min_level_db:-100\n",
|
214 |
+
" | > frame_shift_ms:None\n",
|
215 |
+
" | > frame_length_ms:None\n",
|
216 |
+
" | > ref_level_db:20\n",
|
217 |
+
" | > fft_size:1024\n",
|
218 |
+
" | > power:1.5\n",
|
219 |
+
" | > preemphasis:0.0\n",
|
220 |
+
" | > griffin_lim_iters:60\n",
|
221 |
+
" | > signal_norm:True\n",
|
222 |
+
" | > symmetric_norm:True\n",
|
223 |
+
" | > mel_fmin:50.0\n",
|
224 |
+
" | > mel_fmax:7600.0\n",
|
225 |
+
" | > pitch_fmin:1.0\n",
|
226 |
+
" | > pitch_fmax:640.0\n",
|
227 |
+
" | > spec_gain:1.0\n",
|
228 |
+
" | > stft_pad_mode:reflect\n",
|
229 |
+
" | > max_norm:4.0\n",
|
230 |
+
" | > clip_norm:True\n",
|
231 |
+
" | > do_trim_silence:True\n",
|
232 |
+
" | > trim_db:60\n",
|
233 |
+
" | > do_sound_norm:False\n",
|
234 |
+
" | > do_amp_to_db_linear:True\n",
|
235 |
+
" | > do_amp_to_db_mel:True\n",
|
236 |
+
" | > do_rms_norm:False\n",
|
237 |
+
" | > db_level:None\n",
|
238 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
239 |
+
" | > base:10\n",
|
240 |
+
" | > hop_length:256\n",
|
241 |
+
" | > win_length:1024\n",
|
242 |
+
" > Generator Model: univnet_generator\n",
|
243 |
+
" > Discriminator Model: univnet_discriminator\n",
|
244 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
245 |
+
"language: \n",
|
246 |
+
"speaker: \n",
|
247 |
+
"voice cloning with the voice conversion model\n",
|
248 |
+
" > Text splitted to sentences.\n",
|
249 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
250 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
251 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
252 |
+
" > Processing time: 3.021000385284424\n",
|
253 |
+
" > Real-time factor: 0.3477544400242312\n",
|
254 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
255 |
+
"language: \n",
|
256 |
+
"speaker: \n",
|
257 |
+
"voice cloning with the voice conversion model\n",
|
258 |
+
" > Text splitted to sentences.\n",
|
259 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
260 |
+
" > Processing time: 2.9099998474121094\n",
|
261 |
+
" > Real-time factor: 0.33497690776101013\n",
|
262 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
263 |
+
"language: \n",
|
264 |
+
"speaker: \n",
|
265 |
+
"voice cloning with the voice conversion model\n",
|
266 |
+
" > Text splitted to sentences.\n",
|
267 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
268 |
+
" > Processing time: 2.933000087738037\n",
|
269 |
+
" > Real-time factor: 0.33762451937136506\n",
|
270 |
+
" > tts_models/en/ljspeech/tacotron2-DDC is already downloaded.\n",
|
271 |
+
" > Model's license - apache 2.0\n",
|
272 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
273 |
+
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
274 |
+
" > Model's license - apache 2.0\n",
|
275 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
276 |
+
" > Using model: Tacotron2\n",
|
277 |
+
" > Setting up Audio Processor...\n",
|
278 |
+
" | > sample_rate:22050\n",
|
279 |
+
" | > resample:False\n",
|
280 |
+
" | > num_mels:80\n",
|
281 |
+
" | > log_func:np.log\n",
|
282 |
+
" | > min_level_db:-100\n",
|
283 |
+
" | > frame_shift_ms:None\n",
|
284 |
+
" | > frame_length_ms:None\n",
|
285 |
+
" | > ref_level_db:20\n",
|
286 |
+
" | > fft_size:1024\n",
|
287 |
+
" | > power:1.5\n",
|
288 |
+
" | > preemphasis:0.0\n",
|
289 |
+
" | > griffin_lim_iters:60\n",
|
290 |
+
" | > signal_norm:False\n",
|
291 |
+
" | > symmetric_norm:True\n",
|
292 |
+
" | > mel_fmin:0\n",
|
293 |
+
" | > mel_fmax:8000.0\n",
|
294 |
+
" | > pitch_fmin:1.0\n",
|
295 |
+
" | > pitch_fmax:640.0\n",
|
296 |
+
" | > spec_gain:1.0\n",
|
297 |
+
" | > stft_pad_mode:reflect\n",
|
298 |
+
" | > max_norm:4.0\n",
|
299 |
+
" | > clip_norm:True\n",
|
300 |
+
" | > do_trim_silence:True\n",
|
301 |
+
" | > trim_db:60\n",
|
302 |
+
" | > do_sound_norm:False\n",
|
303 |
+
" | > do_amp_to_db_linear:True\n",
|
304 |
+
" | > do_amp_to_db_mel:True\n",
|
305 |
+
" | > do_rms_norm:False\n",
|
306 |
+
" | > db_level:None\n",
|
307 |
+
" | > stats_path:None\n",
|
308 |
+
" | > base:2.718281828459045\n",
|
309 |
+
" | > hop_length:256\n",
|
310 |
+
" | > win_length:1024\n",
|
311 |
+
" > Model's reduction rate `r` is set to: 1\n",
|
312 |
+
" > Vocoder Model: hifigan\n",
|
313 |
+
" > Setting up Audio Processor...\n",
|
314 |
+
" | > sample_rate:22050\n",
|
315 |
+
" | > resample:False\n",
|
316 |
+
" | > num_mels:80\n",
|
317 |
+
" | > log_func:np.log\n",
|
318 |
+
" | > min_level_db:-100\n",
|
319 |
+
" | > frame_shift_ms:None\n",
|
320 |
+
" | > frame_length_ms:None\n",
|
321 |
+
" | > ref_level_db:20\n",
|
322 |
+
" | > fft_size:1024\n",
|
323 |
+
" | > power:1.5\n",
|
324 |
+
" | > preemphasis:0.0\n",
|
325 |
+
" | > griffin_lim_iters:60\n",
|
326 |
+
" | > signal_norm:False\n",
|
327 |
+
" | > symmetric_norm:True\n",
|
328 |
+
" | > mel_fmin:0\n",
|
329 |
+
" | > mel_fmax:8000.0\n",
|
330 |
+
" | > pitch_fmin:1.0\n",
|
331 |
+
" | > pitch_fmax:640.0\n",
|
332 |
+
" | > spec_gain:1.0\n",
|
333 |
+
" | > stft_pad_mode:reflect\n",
|
334 |
+
" | > max_norm:4.0\n",
|
335 |
+
" | > clip_norm:True\n",
|
336 |
+
" | > do_trim_silence:False\n",
|
337 |
+
" | > trim_db:60\n",
|
338 |
+
" | > do_sound_norm:False\n",
|
339 |
+
" | > do_amp_to_db_linear:True\n",
|
340 |
+
" | > do_amp_to_db_mel:True\n",
|
341 |
+
" | > do_rms_norm:False\n",
|
342 |
+
" | > db_level:None\n",
|
343 |
+
" | > stats_path:None\n",
|
344 |
+
" | > base:2.718281828459045\n",
|
345 |
+
" | > hop_length:256\n",
|
346 |
+
" | > win_length:1024\n",
|
347 |
+
" > Generator Model: hifigan_generator\n",
|
348 |
+
" > Discriminator Model: hifigan_discriminator\n"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"name": "stdout",
|
353 |
+
"output_type": "stream",
|
354 |
+
"text": [
|
355 |
+
"Removing weight norm...\n",
|
356 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC\n",
|
357 |
+
"language: \n",
|
358 |
+
"speaker: \n",
|
359 |
+
"voice cloning with the voice conversion model\n",
|
360 |
+
" > Text splitted to sentences.\n",
|
361 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
362 |
+
" > Processing time: 4.28600001335144\n",
|
363 |
+
" > Real-time factor: 0.42371906516498953\n",
|
364 |
+
" > tts_models/en/ek1/tacotron2 is already downloaded.\n",
|
365 |
+
" > Model's license - apache 2.0\n",
|
366 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
367 |
+
" > vocoder_models/en/ek1/wavegrad is already downloaded.\n",
|
368 |
+
" > Model's license - apache 2.0\n",
|
369 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
370 |
+
" > Using model: Tacotron2\n",
|
371 |
+
" > Setting up Audio Processor...\n",
|
372 |
+
" | > sample_rate:22050\n",
|
373 |
+
" | > resample:False\n",
|
374 |
+
" | > num_mels:80\n",
|
375 |
+
" | > log_func:np.log10\n",
|
376 |
+
" | > min_level_db:-10\n",
|
377 |
+
" | > frame_shift_ms:None\n",
|
378 |
+
" | > frame_length_ms:None\n",
|
379 |
+
" | > ref_level_db:0\n",
|
380 |
+
" | > fft_size:1024\n",
|
381 |
+
" | > power:1.8\n",
|
382 |
+
" | > preemphasis:0.99\n",
|
383 |
+
" | > griffin_lim_iters:60\n",
|
384 |
+
" | > signal_norm:True\n",
|
385 |
+
" | > symmetric_norm:True\n",
|
386 |
+
" | > mel_fmin:0\n",
|
387 |
+
" | > mel_fmax:8000.0\n",
|
388 |
+
" | > pitch_fmin:1.0\n",
|
389 |
+
" | > pitch_fmax:640.0\n",
|
390 |
+
" | > spec_gain:1.0\n",
|
391 |
+
" | > stft_pad_mode:reflect\n",
|
392 |
+
" | > max_norm:4.0\n",
|
393 |
+
" | > clip_norm:True\n",
|
394 |
+
" | > do_trim_silence:True\n",
|
395 |
+
" | > trim_db:60\n",
|
396 |
+
" | > do_sound_norm:False\n",
|
397 |
+
" | > do_amp_to_db_linear:True\n",
|
398 |
+
" | > do_amp_to_db_mel:True\n",
|
399 |
+
" | > do_rms_norm:False\n",
|
400 |
+
" | > db_level:None\n",
|
401 |
+
" | > stats_path:None\n",
|
402 |
+
" | > base:10\n",
|
403 |
+
" | > hop_length:256\n",
|
404 |
+
" | > win_length:1024\n",
|
405 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
406 |
+
" > Vocoder Model: wavegrad\n",
|
407 |
+
"model: tts_models/en/ek1/tacotron2\n",
|
408 |
+
"language: \n",
|
409 |
+
"speaker: \n",
|
410 |
+
"voice cloning with the voice conversion model\n",
|
411 |
+
" > Text splitted to sentences.\n",
|
412 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
413 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
414 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
415 |
+
" > Processing time: 224.84099984169006\n",
|
416 |
+
" > Real-time factor: 29.51038122922182\n",
|
417 |
+
" > tts_models/en/ek1/tacotron2 is already downloaded.\n",
|
418 |
+
" > Model's license - apache 2.0\n",
|
419 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
420 |
+
" > vocoder_models/en/ek1/wavegrad is already downloaded.\n",
|
421 |
+
" > Model's license - apache 2.0\n",
|
422 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
423 |
+
" > Using model: Tacotron2\n",
|
424 |
+
" > Setting up Audio Processor...\n",
|
425 |
+
" | > sample_rate:22050\n",
|
426 |
+
" | > resample:False\n",
|
427 |
+
" | > num_mels:80\n",
|
428 |
+
" | > log_func:np.log10\n",
|
429 |
+
" | > min_level_db:-10\n",
|
430 |
+
" | > frame_shift_ms:None\n",
|
431 |
+
" | > frame_length_ms:None\n",
|
432 |
+
" | > ref_level_db:0\n",
|
433 |
+
" | > fft_size:1024\n",
|
434 |
+
" | > power:1.8\n",
|
435 |
+
" | > preemphasis:0.99\n",
|
436 |
+
" | > griffin_lim_iters:60\n",
|
437 |
+
" | > signal_norm:True\n",
|
438 |
+
" | > symmetric_norm:True\n",
|
439 |
+
" | > mel_fmin:0\n",
|
440 |
+
" | > mel_fmax:8000.0\n",
|
441 |
+
" | > pitch_fmin:1.0\n",
|
442 |
+
" | > pitch_fmax:640.0\n",
|
443 |
+
" | > spec_gain:1.0\n",
|
444 |
+
" | > stft_pad_mode:reflect\n",
|
445 |
+
" | > max_norm:4.0\n",
|
446 |
+
" | > clip_norm:True\n",
|
447 |
+
" | > do_trim_silence:True\n",
|
448 |
+
" | > trim_db:60\n",
|
449 |
+
" | > do_sound_norm:False\n",
|
450 |
+
" | > do_amp_to_db_linear:True\n",
|
451 |
+
" | > do_amp_to_db_mel:True\n",
|
452 |
+
" | > do_rms_norm:False\n",
|
453 |
+
" | > db_level:None\n",
|
454 |
+
" | > stats_path:None\n",
|
455 |
+
" | > base:10\n",
|
456 |
+
" | > hop_length:256\n",
|
457 |
+
" | > win_length:1024\n",
|
458 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
459 |
+
" > Vocoder Model: wavegrad\n",
|
460 |
+
"model: tts_models/en/ek1/tacotron2\n",
|
461 |
+
"language: \n",
|
462 |
+
"speaker: \n",
|
463 |
+
"voice cloning with the voice conversion model\n",
|
464 |
+
" > Text splitted to sentences.\n",
|
465 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
466 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
467 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
468 |
+
" > Processing time: 266.6489999294281\n",
|
469 |
+
" > Real-time factor: 34.99768124073744\n",
|
470 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
471 |
+
" > Model's license - apache 2.0\n",
|
472 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
473 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
474 |
+
" > Model's license - apache 2.0\n",
|
475 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
476 |
+
" > Using model: Tacotron2\n",
|
477 |
+
" > Setting up Audio Processor...\n",
|
478 |
+
" | > sample_rate:22050\n",
|
479 |
+
" | > resample:False\n",
|
480 |
+
" | > num_mels:80\n",
|
481 |
+
" | > log_func:np.log10\n",
|
482 |
+
" | > min_level_db:-100\n",
|
483 |
+
" | > frame_shift_ms:None\n",
|
484 |
+
" | > frame_length_ms:None\n",
|
485 |
+
" | > ref_level_db:20\n",
|
486 |
+
" | > fft_size:1024\n",
|
487 |
+
" | > power:1.5\n",
|
488 |
+
" | > preemphasis:0.0\n",
|
489 |
+
" | > griffin_lim_iters:60\n",
|
490 |
+
" | > signal_norm:True\n",
|
491 |
+
" | > symmetric_norm:True\n",
|
492 |
+
" | > mel_fmin:50.0\n",
|
493 |
+
" | > mel_fmax:7600.0\n",
|
494 |
+
" | > pitch_fmin:0.0\n",
|
495 |
+
" | > pitch_fmax:640.0\n",
|
496 |
+
" | > spec_gain:1.0\n",
|
497 |
+
" | > stft_pad_mode:reflect\n",
|
498 |
+
" | > max_norm:4.0\n",
|
499 |
+
" | > clip_norm:True\n",
|
500 |
+
" | > do_trim_silence:True\n",
|
501 |
+
" | > trim_db:60\n",
|
502 |
+
" | > do_sound_norm:False\n",
|
503 |
+
" | > do_amp_to_db_linear:True\n",
|
504 |
+
" | > do_amp_to_db_mel:True\n",
|
505 |
+
" | > do_rms_norm:False\n",
|
506 |
+
" | > db_level:None\n",
|
507 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
508 |
+
" | > base:10\n",
|
509 |
+
" | > hop_length:256\n",
|
510 |
+
" | > win_length:1024\n",
|
511 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
512 |
+
" > Vocoder Model: univnet\n",
|
513 |
+
" > Setting up Audio Processor...\n",
|
514 |
+
" | > sample_rate:22050\n",
|
515 |
+
" | > resample:False\n",
|
516 |
+
" | > num_mels:80\n",
|
517 |
+
" | > log_func:np.log10\n",
|
518 |
+
" | > min_level_db:-100\n",
|
519 |
+
" | > frame_shift_ms:None\n",
|
520 |
+
" | > frame_length_ms:None\n",
|
521 |
+
" | > ref_level_db:20\n",
|
522 |
+
" | > fft_size:1024\n",
|
523 |
+
" | > power:1.5\n",
|
524 |
+
" | > preemphasis:0.0\n",
|
525 |
+
" | > griffin_lim_iters:60\n",
|
526 |
+
" | > signal_norm:True\n",
|
527 |
+
" | > symmetric_norm:True\n",
|
528 |
+
" | > mel_fmin:50.0\n",
|
529 |
+
" | > mel_fmax:7600.0\n",
|
530 |
+
" | > pitch_fmin:1.0\n",
|
531 |
+
" | > pitch_fmax:640.0\n",
|
532 |
+
" | > spec_gain:1.0\n",
|
533 |
+
" | > stft_pad_mode:reflect\n",
|
534 |
+
" | > max_norm:4.0\n",
|
535 |
+
" | > clip_norm:True\n",
|
536 |
+
" | > do_trim_silence:True\n",
|
537 |
+
" | > trim_db:60\n",
|
538 |
+
" | > do_sound_norm:False\n",
|
539 |
+
" | > do_amp_to_db_linear:True\n",
|
540 |
+
" | > do_amp_to_db_mel:True\n",
|
541 |
+
" | > do_rms_norm:False\n",
|
542 |
+
" | > db_level:None\n",
|
543 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
544 |
+
" | > base:10\n",
|
545 |
+
" | > hop_length:256\n",
|
546 |
+
" | > win_length:1024\n",
|
547 |
+
" > Generator Model: univnet_generator\n",
|
548 |
+
" > Discriminator Model: univnet_discriminator\n",
|
549 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
550 |
+
"language: \n",
|
551 |
+
"speaker: \n",
|
552 |
+
"voice cloning with the voice conversion model\n",
|
553 |
+
" > Text splitted to sentences.\n",
|
554 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
555 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
556 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
557 |
+
" > Processing time: 2.885999917984009\n",
|
558 |
+
" > Real-time factor: 0.3322142195933605\n",
|
559 |
+
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--speedy-speech\n",
|
560 |
+
" > Model's license - apache 2.0\n",
|
561 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
562 |
+
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
563 |
+
" > Model's license - apache 2.0\n",
|
564 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
565 |
+
" > Using model: speedy_speech\n",
|
566 |
+
" > Setting up Audio Processor...\n",
|
567 |
+
" | > sample_rate:22050\n",
|
568 |
+
" | > resample:False\n",
|
569 |
+
" | > num_mels:80\n",
|
570 |
+
" | > log_func:np.log\n",
|
571 |
+
" | > min_level_db:-100\n",
|
572 |
+
" | > frame_shift_ms:None\n",
|
573 |
+
" | > frame_length_ms:None\n",
|
574 |
+
" | > ref_level_db:20\n",
|
575 |
+
" | > fft_size:1024\n",
|
576 |
+
" | > power:1.5\n",
|
577 |
+
" | > preemphasis:0.0\n",
|
578 |
+
" | > griffin_lim_iters:60\n",
|
579 |
+
" | > signal_norm:False\n",
|
580 |
+
" | > symmetric_norm:True\n",
|
581 |
+
" | > mel_fmin:0\n",
|
582 |
+
" | > mel_fmax:8000.0\n",
|
583 |
+
" | > pitch_fmin:1.0\n",
|
584 |
+
" | > pitch_fmax:640.0\n",
|
585 |
+
" | > spec_gain:1.0\n",
|
586 |
+
" | > stft_pad_mode:reflect\n",
|
587 |
+
" | > max_norm:4.0\n",
|
588 |
+
" | > clip_norm:True\n",
|
589 |
+
" | > do_trim_silence:True\n",
|
590 |
+
" | > trim_db:60\n",
|
591 |
+
" | > do_sound_norm:False\n",
|
592 |
+
" | > do_amp_to_db_linear:True\n",
|
593 |
+
" | > do_amp_to_db_mel:True\n",
|
594 |
+
" | > do_rms_norm:False\n",
|
595 |
+
" | > db_level:None\n",
|
596 |
+
" | > stats_path:None\n",
|
597 |
+
" | > base:2.718281828459045\n",
|
598 |
+
" | > hop_length:256\n",
|
599 |
+
" | > win_length:1024\n",
|
600 |
+
" > Vocoder Model: hifigan\n",
|
601 |
+
" > Setting up Audio Processor...\n",
|
602 |
+
" | > sample_rate:22050\n",
|
603 |
+
" | > resample:False\n",
|
604 |
+
" | > num_mels:80\n",
|
605 |
+
" | > log_func:np.log\n",
|
606 |
+
" | > min_level_db:-100\n",
|
607 |
+
" | > frame_shift_ms:None\n",
|
608 |
+
" | > frame_length_ms:None\n",
|
609 |
+
" | > ref_level_db:20\n",
|
610 |
+
" | > fft_size:1024\n",
|
611 |
+
" | > power:1.5\n",
|
612 |
+
" | > preemphasis:0.0\n",
|
613 |
+
" | > griffin_lim_iters:60\n",
|
614 |
+
" | > signal_norm:False\n",
|
615 |
+
" | > symmetric_norm:True\n",
|
616 |
+
" | > mel_fmin:0\n",
|
617 |
+
" | > mel_fmax:8000.0\n",
|
618 |
+
" | > pitch_fmin:1.0\n",
|
619 |
+
" | > pitch_fmax:640.0\n",
|
620 |
+
" | > spec_gain:1.0\n",
|
621 |
+
" | > stft_pad_mode:reflect\n",
|
622 |
+
" | > max_norm:4.0\n",
|
623 |
+
" | > clip_norm:True\n",
|
624 |
+
" | > do_trim_silence:False\n",
|
625 |
+
" | > trim_db:60\n",
|
626 |
+
" | > do_sound_norm:False\n",
|
627 |
+
" | > do_amp_to_db_linear:True\n",
|
628 |
+
" | > do_amp_to_db_mel:True\n",
|
629 |
+
" | > do_rms_norm:False\n",
|
630 |
+
" | > db_level:None\n",
|
631 |
+
" | > stats_path:None\n",
|
632 |
+
" | > base:2.718281828459045\n",
|
633 |
+
" | > hop_length:256\n",
|
634 |
+
" | > win_length:1024\n",
|
635 |
+
" > Generator Model: hifigan_generator\n",
|
636 |
+
" > Discriminator Model: hifigan_discriminator\n",
|
637 |
+
"Removing weight norm...\n"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"name": "stdout",
|
642 |
+
"output_type": "stream",
|
643 |
+
"text": [
|
644 |
+
"model: tts_models/en/ljspeech/speedy-speech\n",
|
645 |
+
"language: \n",
|
646 |
+
"speaker: \n",
|
647 |
+
"Using original voice\n",
|
648 |
+
" > Text splitted to sentences.\n",
|
649 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
650 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
651 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
652 |
+
" > Processing time: 0.9679999351501465\n",
|
653 |
+
" > Real-time factor: 0.11673301633083617\n",
|
654 |
+
"model: tts_models/en/ljspeech/speedy-speech\n",
|
655 |
+
"language: \n",
|
656 |
+
"speaker: \n",
|
657 |
+
"voice cloning with the voice conversion model\n",
|
658 |
+
" > Text splitted to sentences.\n",
|
659 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
660 |
+
" > Processing time: 0.9630000591278076\n",
|
661 |
+
" > Real-time factor: 0.11613007144605443\n",
|
662 |
+
" > tts_models/en/ljspeech/tacotron2-DCA is already downloaded.\n",
|
663 |
+
" > Model's license - MPL\n",
|
664 |
+
" > Check https://www.mozilla.org/en-US/MPL/2.0/ for more info.\n",
|
665 |
+
" > vocoder_models/en/ljspeech/multiband-melgan is already downloaded.\n",
|
666 |
+
" > Model's license - MPL\n",
|
667 |
+
" > Check https://www.mozilla.org/en-US/MPL/2.0/ for more info.\n",
|
668 |
+
" > Using model: Tacotron2\n",
|
669 |
+
" > Setting up Audio Processor...\n",
|
670 |
+
" | > sample_rate:22050\n",
|
671 |
+
" | > resample:False\n",
|
672 |
+
" | > num_mels:80\n",
|
673 |
+
" | > log_func:np.log10\n",
|
674 |
+
" | > min_level_db:-100\n",
|
675 |
+
" | > frame_shift_ms:None\n",
|
676 |
+
" | > frame_length_ms:None\n",
|
677 |
+
" | > ref_level_db:20\n",
|
678 |
+
" | > fft_size:1024\n",
|
679 |
+
" | > power:1.5\n",
|
680 |
+
" | > preemphasis:0.0\n",
|
681 |
+
" | > griffin_lim_iters:60\n",
|
682 |
+
" | > signal_norm:True\n",
|
683 |
+
" | > symmetric_norm:True\n",
|
684 |
+
" | > mel_fmin:50.0\n",
|
685 |
+
" | > mel_fmax:7600.0\n",
|
686 |
+
" | > pitch_fmin:0.0\n",
|
687 |
+
" | > pitch_fmax:640.0\n",
|
688 |
+
" | > spec_gain:1.0\n",
|
689 |
+
" | > stft_pad_mode:reflect\n",
|
690 |
+
" | > max_norm:4.0\n",
|
691 |
+
" | > clip_norm:True\n",
|
692 |
+
" | > do_trim_silence:True\n",
|
693 |
+
" | > trim_db:60\n",
|
694 |
+
" | > do_sound_norm:False\n",
|
695 |
+
" | > do_amp_to_db_linear:True\n",
|
696 |
+
" | > do_amp_to_db_mel:True\n",
|
697 |
+
" | > do_rms_norm:False\n",
|
698 |
+
" | > db_level:None\n",
|
699 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DCA\\scale_stats.npy\n",
|
700 |
+
" | > base:10\n",
|
701 |
+
" | > hop_length:256\n",
|
702 |
+
" | > win_length:1024\n",
|
703 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
704 |
+
" > Vocoder Model: multiband_melgan\n",
|
705 |
+
" > Setting up Audio Processor...\n",
|
706 |
+
" | > sample_rate:22050\n",
|
707 |
+
" | > resample:False\n",
|
708 |
+
" | > num_mels:80\n",
|
709 |
+
" | > log_func:np.log10\n",
|
710 |
+
" | > min_level_db:-100\n",
|
711 |
+
" | > frame_shift_ms:None\n",
|
712 |
+
" | > frame_length_ms:None\n",
|
713 |
+
" | > ref_level_db:0\n",
|
714 |
+
" | > fft_size:1024\n",
|
715 |
+
" | > power:1.5\n",
|
716 |
+
" | > preemphasis:0.0\n",
|
717 |
+
" | > griffin_lim_iters:60\n",
|
718 |
+
" | > signal_norm:True\n",
|
719 |
+
" | > symmetric_norm:True\n",
|
720 |
+
" | > mel_fmin:50.0\n",
|
721 |
+
" | > mel_fmax:7600.0\n",
|
722 |
+
" | > pitch_fmin:0.0\n",
|
723 |
+
" | > pitch_fmax:640.0\n",
|
724 |
+
" | > spec_gain:1.0\n",
|
725 |
+
" | > stft_pad_mode:reflect\n",
|
726 |
+
" | > max_norm:4.0\n",
|
727 |
+
" | > clip_norm:True\n",
|
728 |
+
" | > do_trim_silence:True\n",
|
729 |
+
" | > trim_db:60\n",
|
730 |
+
" | > do_sound_norm:False\n",
|
731 |
+
" | > do_amp_to_db_linear:True\n",
|
732 |
+
" | > do_amp_to_db_mel:True\n",
|
733 |
+
" | > do_rms_norm:False\n",
|
734 |
+
" | > db_level:None\n",
|
735 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--multiband-melgan\\scale_stats.npy\n",
|
736 |
+
" | > base:10\n",
|
737 |
+
" | > hop_length:256\n",
|
738 |
+
" | > win_length:1024\n",
|
739 |
+
" > Generator Model: multiband_melgan_generator\n",
|
740 |
+
" > Discriminator Model: melgan_multiscale_discriminator\n",
|
741 |
+
"model: tts_models/en/ljspeech/tacotron2-DCA\n",
|
742 |
+
"language: \n",
|
743 |
+
"speaker: \n",
|
744 |
+
"Using original voice\n",
|
745 |
+
" > Text splitted to sentences.\n",
|
746 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
747 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
748 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
749 |
+
" > Processing time: 2.067000150680542\n",
|
750 |
+
" > Real-time factor: 0.23295588670728015\n",
|
751 |
+
"model: tts_models/en/ljspeech/tacotron2-DCA\n",
|
752 |
+
"language: \n",
|
753 |
+
"speaker: \n",
|
754 |
+
"voice cloning with the voice conversion model\n",
|
755 |
+
" > Text splitted to sentences.\n",
|
756 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
757 |
+
" > Processing time: 2.1570000648498535\n",
|
758 |
+
" > Real-time factor: 0.2430990934225715\n",
|
759 |
+
"model: tts_models/en/ljspeech/tacotron2-DCA\n",
|
760 |
+
"language: \n",
|
761 |
+
"speaker: \n",
|
762 |
+
"voice cloning with the voice conversion model\n",
|
763 |
+
" > Text splitted to sentences.\n",
|
764 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
765 |
+
" > Processing time: 2.0920000076293945\n",
|
766 |
+
" > Real-time factor: 0.23577343069302087\n",
|
767 |
+
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--fast_pitch\n",
|
768 |
+
" > Model's license - apache 2.0\n",
|
769 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
770 |
+
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
771 |
+
" > Model's license - apache 2.0\n",
|
772 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
773 |
+
" > Using model: fast_pitch\n",
|
774 |
+
" > Setting up Audio Processor...\n",
|
775 |
+
" | > sample_rate:22050\n",
|
776 |
+
" | > resample:False\n",
|
777 |
+
" | > num_mels:80\n",
|
778 |
+
" | > log_func:np.log\n",
|
779 |
+
" | > min_level_db:-100\n",
|
780 |
+
" | > frame_shift_ms:None\n",
|
781 |
+
" | > frame_length_ms:None\n",
|
782 |
+
" | > ref_level_db:20\n",
|
783 |
+
" | > fft_size:1024\n",
|
784 |
+
" | > power:1.5\n",
|
785 |
+
" | > preemphasis:0.0\n",
|
786 |
+
" | > griffin_lim_iters:60\n",
|
787 |
+
" | > signal_norm:False\n",
|
788 |
+
" | > symmetric_norm:True\n",
|
789 |
+
" | > mel_fmin:0\n",
|
790 |
+
" | > mel_fmax:8000.0\n",
|
791 |
+
" | > pitch_fmin:1.0\n",
|
792 |
+
" | > pitch_fmax:640.0\n",
|
793 |
+
" | > spec_gain:1.0\n",
|
794 |
+
" | > stft_pad_mode:reflect\n",
|
795 |
+
" | > max_norm:4.0\n",
|
796 |
+
" | > clip_norm:True\n",
|
797 |
+
" | > do_trim_silence:True\n",
|
798 |
+
" | > trim_db:60\n",
|
799 |
+
" | > do_sound_norm:False\n",
|
800 |
+
" | > do_amp_to_db_linear:True\n",
|
801 |
+
" | > do_amp_to_db_mel:True\n",
|
802 |
+
" | > do_rms_norm:False\n",
|
803 |
+
" | > db_level:None\n",
|
804 |
+
" | > stats_path:None\n",
|
805 |
+
" | > base:2.718281828459045\n",
|
806 |
+
" | > hop_length:256\n",
|
807 |
+
" | > win_length:1024\n",
|
808 |
+
" > Vocoder Model: hifigan\n",
|
809 |
+
" > Setting up Audio Processor...\n",
|
810 |
+
" | > sample_rate:22050\n",
|
811 |
+
" | > resample:False\n",
|
812 |
+
" | > num_mels:80\n",
|
813 |
+
" | > log_func:np.log\n",
|
814 |
+
" | > min_level_db:-100\n",
|
815 |
+
" | > frame_shift_ms:None\n",
|
816 |
+
" | > frame_length_ms:None\n",
|
817 |
+
" | > ref_level_db:20\n",
|
818 |
+
" | > fft_size:1024\n",
|
819 |
+
" | > power:1.5\n",
|
820 |
+
" | > preemphasis:0.0\n",
|
821 |
+
" | > griffin_lim_iters:60\n",
|
822 |
+
" | > signal_norm:False\n",
|
823 |
+
" | > symmetric_norm:True\n",
|
824 |
+
" | > mel_fmin:0\n",
|
825 |
+
" | > mel_fmax:8000.0\n",
|
826 |
+
" | > pitch_fmin:1.0\n",
|
827 |
+
" | > pitch_fmax:640.0\n",
|
828 |
+
" | > spec_gain:1.0\n",
|
829 |
+
" | > stft_pad_mode:reflect\n",
|
830 |
+
" | > max_norm:4.0\n",
|
831 |
+
" | > clip_norm:True\n",
|
832 |
+
" | > do_trim_silence:False\n",
|
833 |
+
" | > trim_db:60\n",
|
834 |
+
" | > do_sound_norm:False\n",
|
835 |
+
" | > do_amp_to_db_linear:True\n",
|
836 |
+
" | > do_amp_to_db_mel:True\n",
|
837 |
+
" | > do_rms_norm:False\n",
|
838 |
+
" | > db_level:None\n",
|
839 |
+
" | > stats_path:None\n",
|
840 |
+
" | > base:2.718281828459045\n",
|
841 |
+
" | > hop_length:256\n",
|
842 |
+
" | > win_length:1024\n",
|
843 |
+
" > Generator Model: hifigan_generator\n",
|
844 |
+
" > Discriminator Model: hifigan_discriminator\n",
|
845 |
+
"Removing weight norm...\n",
|
846 |
+
"model: tts_models/en/ljspeech/fast_pitch\n",
|
847 |
+
"language: \n",
|
848 |
+
"speaker: \n",
|
849 |
+
"Using original voice\n",
|
850 |
+
" > Text splitted to sentences.\n",
|
851 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
852 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
853 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
854 |
+
" > Processing time: 1.8829996585845947\n",
|
855 |
+
" > Real-time factor: 0.19894272496832988\n",
|
856 |
+
"model: tts_models/en/ljspeech/fast_pitch\n",
|
857 |
+
"language: \n",
|
858 |
+
"speaker: \n",
|
859 |
+
"voice cloning with the voice conversion model\n",
|
860 |
+
" > Text splitted to sentences.\n",
|
861 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
862 |
+
" > Processing time: 1.8359999656677246\n",
|
863 |
+
" > Real-time factor: 0.19397711228808903\n",
|
864 |
+
"model: tts_models/en/ljspeech/fast_pitch\n",
|
865 |
+
"language: \n",
|
866 |
+
"speaker: \n",
|
867 |
+
"voice cloning with the voice conversion model\n",
|
868 |
+
" > Text splitted to sentences.\n",
|
869 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
870 |
+
" > Processing time: 1.8659999370574951\n",
|
871 |
+
" > Real-time factor: 0.19714666998293168\n",
|
872 |
+
"model: voice_conversion_models/multilingual/vctk/freevc24\n",
|
873 |
+
"source_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\b6e9c24083a878478ebbecd7bc42e1f631c05df6\\henry5-0-100.wav\n",
|
874 |
+
"target_wav: C:\\Users\\Torch\\AppData\\Local\\Temp\\gradio\\11c82c70d145ea630f81dfa541de52bf615719ae\\yearn_for_time-0-100.wav\n",
|
875 |
+
" > Downloading model to C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--overflow\n",
|
876 |
+
" > Model's license - apache 2.0\n",
|
877 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
878 |
+
" > vocoder_models/en/ljspeech/hifigan_v2 is already downloaded.\n",
|
879 |
+
" > Model's license - apache 2.0\n",
|
880 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
881 |
+
" > Using model: OverFlow\n",
|
882 |
+
" > Setting up Audio Processor...\n",
|
883 |
+
" | > sample_rate:22050\n",
|
884 |
+
" | > resample:False\n",
|
885 |
+
" | > num_mels:80\n",
|
886 |
+
" | > log_func:np.log\n",
|
887 |
+
" | > min_level_db:-100\n",
|
888 |
+
" | > frame_shift_ms:None\n",
|
889 |
+
" | > frame_length_ms:None\n",
|
890 |
+
" | > ref_level_db:20\n",
|
891 |
+
" | > fft_size:1024\n",
|
892 |
+
" | > power:1.5\n",
|
893 |
+
" | > preemphasis:0.0\n",
|
894 |
+
" | > griffin_lim_iters:60\n",
|
895 |
+
" | > signal_norm:False\n",
|
896 |
+
" | > symmetric_norm:True\n",
|
897 |
+
" | > mel_fmin:0\n",
|
898 |
+
" | > mel_fmax:8000.0\n",
|
899 |
+
" | > pitch_fmin:1.0\n",
|
900 |
+
" | > pitch_fmax:640.0\n",
|
901 |
+
" | > spec_gain:1.0\n",
|
902 |
+
" | > stft_pad_mode:reflect\n",
|
903 |
+
" | > max_norm:4.0\n",
|
904 |
+
" | > clip_norm:True\n",
|
905 |
+
" | > do_trim_silence:True\n",
|
906 |
+
" | > trim_db:60\n",
|
907 |
+
" | > do_sound_norm:False\n",
|
908 |
+
" | > do_amp_to_db_linear:True\n",
|
909 |
+
" | > do_amp_to_db_mel:True\n",
|
910 |
+
" | > do_rms_norm:False\n",
|
911 |
+
" | > db_level:None\n",
|
912 |
+
" | > stats_path:None\n",
|
913 |
+
" | > base:2.718281828459045\n",
|
914 |
+
" | > hop_length:256\n",
|
915 |
+
" | > win_length:1024\n"
|
916 |
+
]
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"name": "stdout",
|
920 |
+
"output_type": "stream",
|
921 |
+
"text": [
|
922 |
+
" > Vocoder Model: hifigan\n",
|
923 |
+
" > Setting up Audio Processor...\n",
|
924 |
+
" | > sample_rate:22050\n",
|
925 |
+
" | > resample:False\n",
|
926 |
+
" | > num_mels:80\n",
|
927 |
+
" | > log_func:np.log\n",
|
928 |
+
" | > min_level_db:-100\n",
|
929 |
+
" | > frame_shift_ms:None\n",
|
930 |
+
" | > frame_length_ms:None\n",
|
931 |
+
" | > ref_level_db:20\n",
|
932 |
+
" | > fft_size:1024\n",
|
933 |
+
" | > power:1.5\n",
|
934 |
+
" | > preemphasis:0.0\n",
|
935 |
+
" | > griffin_lim_iters:60\n",
|
936 |
+
" | > signal_norm:False\n",
|
937 |
+
" | > symmetric_norm:True\n",
|
938 |
+
" | > mel_fmin:0\n",
|
939 |
+
" | > mel_fmax:8000.0\n",
|
940 |
+
" | > pitch_fmin:1.0\n",
|
941 |
+
" | > pitch_fmax:640.0\n",
|
942 |
+
" | > spec_gain:1.0\n",
|
943 |
+
" | > stft_pad_mode:reflect\n",
|
944 |
+
" | > max_norm:4.0\n",
|
945 |
+
" | > clip_norm:True\n",
|
946 |
+
" | > do_trim_silence:False\n",
|
947 |
+
" | > trim_db:60\n",
|
948 |
+
" | > do_sound_norm:False\n",
|
949 |
+
" | > do_amp_to_db_linear:True\n",
|
950 |
+
" | > do_amp_to_db_mel:True\n",
|
951 |
+
" | > do_rms_norm:False\n",
|
952 |
+
" | > db_level:None\n",
|
953 |
+
" | > stats_path:None\n",
|
954 |
+
" | > base:2.718281828459045\n",
|
955 |
+
" | > hop_length:256\n",
|
956 |
+
" | > win_length:1024\n",
|
957 |
+
" > Generator Model: hifigan_generator\n",
|
958 |
+
" > Discriminator Model: hifigan_discriminator\n",
|
959 |
+
"Removing weight norm...\n",
|
960 |
+
"model: tts_models/en/ljspeech/overflow\n",
|
961 |
+
"language: \n",
|
962 |
+
"speaker: \n",
|
963 |
+
"Using original voice\n",
|
964 |
+
" > Text splitted to sentences.\n",
|
965 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
966 |
+
" > Processing time: 2.4030001163482666\n",
|
967 |
+
" > Real-time factor: 0.26459208495864933\n",
|
968 |
+
"model: tts_models/en/ljspeech/overflow\n",
|
969 |
+
"language: \n",
|
970 |
+
"speaker: \n",
|
971 |
+
"voice cloning with the voice conversion model\n",
|
972 |
+
" > Text splitted to sentences.\n",
|
973 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
974 |
+
" > Processing time: 2.4769999980926514\n",
|
975 |
+
" > Real-time factor: 0.27343925203231617\n"
|
976 |
+
]
|
977 |
+
}
|
978 |
+
],
|
979 |
+
"source": [
|
980 |
+
"title = \"\"\n",
|
981 |
+
"description = \"\"\"\"\"\"\n",
|
982 |
+
"article = \"\"\"\"\"\"\n",
|
983 |
+
"\n",
|
984 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
985 |
+
"GPU = device == \"cuda\"\n",
|
986 |
+
"INT16MAX = np.iinfo(np.int16).max\n",
|
987 |
+
"VC_MODEL = TTS(model_name='voice_conversion_models/multilingual/vctk/freevc24', progress_bar=False, gpu=GPU)\n",
|
988 |
+
"\n",
|
989 |
+
"\n",
|
990 |
+
"model_ids = ModelManager(verbose=False).list_models()\n",
|
991 |
+
"model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
992 |
+
"model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]\n",
|
993 |
+
"model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]\n",
|
994 |
+
"examples_pt = 'examples'\n",
|
995 |
+
"allowed_extentions = ['.mp3', '.wav']\n",
|
996 |
+
"examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}\n",
|
997 |
+
"verse = \"\"\"Mary had a little lamb,\n",
|
998 |
+
"Its fleece was white as snow.\n",
|
999 |
+
"Everywhere the child went,\n",
|
1000 |
+
"The little lamb was sure to go.\"\"\"\n",
|
1001 |
+
"\n",
|
1002 |
+
"\n",
|
1003 |
+
"def on_model_tts_select(model_name):\n",
|
1004 |
+
" tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)\n",
|
1005 |
+
" languages = tts_var.languages if tts_var.is_multi_lingual else ['']\n",
|
1006 |
+
" speakers = [s.replace('\\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting\n",
|
1007 |
+
" language = languages[0]\n",
|
1008 |
+
" speaker = speakers[0]\n",
|
1009 |
+
" return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\\\n",
|
1010 |
+
" gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)\n",
|
1011 |
+
"\n",
|
1012 |
+
"\n",
|
1013 |
+
"def on_voicedropdown(x):\n",
|
1014 |
+
" return examples[x]\n",
|
1015 |
+
"\n",
|
1016 |
+
"\n",
|
1017 |
+
"def voice_clone(source_wav, target_wav):\n",
|
1018 |
+
" print(f'model: {VC_MODEL.model_name}\\nsource_wav: {source_wav}\\ntarget_wav: {target_wav}')\n",
|
1019 |
+
" sample_rate = VC_MODEL.voice_converter.output_sample_rate\n",
|
1020 |
+
" if source_wav is None or target_wav is None:\n",
|
1021 |
+
" return (sample_rate, np.zeros(0).astype(np.int16))\n",
|
1022 |
+
"\n",
|
1023 |
+
" speech = VC_MODEL.voice_conversion(source_wav=source_wav, target_wav=target_wav)\n",
|
1024 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
1025 |
+
" return (sample_rate, speech)\n",
|
1026 |
+
"\n",
|
1027 |
+
"\n",
|
1028 |
+
"def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):\n",
|
1029 |
+
" if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):\n",
|
1030 |
+
" return (16000, np.zeros(0).astype(np.int16))\n",
|
1031 |
+
"\n",
|
1032 |
+
" sample_rate = tts_model.synthesizer.output_sample_rate\n",
|
1033 |
+
" if tts_model.is_multi_speaker:\n",
|
1034 |
+
" speaker = {s.replace('\\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting\n",
|
1035 |
+
" print(f'model: {tts_model.model_name}\\nlanguage: {language}\\nspeaker: {speaker}')\n",
|
1036 |
+
"\n",
|
1037 |
+
" language = None if language == '' else language\n",
|
1038 |
+
" speaker = None if speaker == '' else speaker\n",
|
1039 |
+
" if use_original_voice:\n",
|
1040 |
+
" print('Using original voice')\n",
|
1041 |
+
" speech = tts_model.tts(text, language=language, speaker=speaker) \n",
|
1042 |
+
" elif tts_model.synthesizer.tts_model.speaker_manager:\n",
|
1043 |
+
" print('voice cloning with the tts')\n",
|
1044 |
+
" speech = tts_model.tts(text, language=language, speaker_wav=target_wav)\n",
|
1045 |
+
" else:\n",
|
1046 |
+
" print('voice cloning with the voice conversion model')\n",
|
1047 |
+
"# speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)\n",
|
1048 |
+
" with tempfile.NamedTemporaryFile(suffix=\".wav\", delete=False) as fp:\n",
|
1049 |
+
" # Lazy code... save it to a temp file to resample it while reading it for VC\n",
|
1050 |
+
" tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)\n",
|
1051 |
+
" speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)\n",
|
1052 |
+
" \n",
|
1053 |
+
"\n",
|
1054 |
+
" speech = (np.array(speech) * INT16MAX).astype(np.int16)\n",
|
1055 |
+
" return (sample_rate, speech)\n",
|
1056 |
+
"\n",
|
1057 |
+
"\n",
|
1058 |
+
"with gr.Blocks() as demo:\n",
|
1059 |
+
" tts_model = gr.State(None)\n",
|
1060 |
+
"# vc_model = gr.State(None)\n",
|
1061 |
+
" def activate(*args):\n",
|
1062 |
+
" return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)\n",
|
1063 |
+
" def deactivate(*args):\n",
|
1064 |
+
" return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)\n",
|
1065 |
+
"\n",
|
1066 |
+
" \n",
|
1067 |
+
" gr.Markdown(description)\n",
|
1068 |
+
"\n",
|
1069 |
+
" with gr.Row(equal_height=True):\n",
|
1070 |
+
" with gr.Column(scale=5, min_width=50):\n",
|
1071 |
+
" model_tts_dropdown = gr.Dropdown(model_tts_ids, value=None, label='Text-to-speech model', interactive=True)\n",
|
1072 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
1073 |
+
" language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)\n",
|
1074 |
+
" with gr.Column(scale=1, min_width=10):\n",
|
1075 |
+
" speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)\n",
|
1076 |
+
" \n",
|
1077 |
+
" with gr.Accordion(\"Target voice\", open=False) as accordion:\n",
|
1078 |
+
" gr.Markdown(\"Upload target voice...\")\n",
|
1079 |
+
" with gr.Row(equal_height=True):\n",
|
1080 |
+
" voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')\n",
|
1081 |
+
" voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)\n",
|
1082 |
+
"\n",
|
1083 |
+
" with gr.Row(equal_height=True):\n",
|
1084 |
+
" with gr.Column(scale=2):\n",
|
1085 |
+
" with gr.Row(equal_height=True):\n",
|
1086 |
+
" with gr.Column():\n",
|
1087 |
+
" text_to_convert = gr.Textbox(verse)\n",
|
1088 |
+
" orig_voice = gr.Checkbox(label='Use original voice')\n",
|
1089 |
+
" voice_to_convert = gr.Audio(label=\"Upload voice to convert\", source='upload', type='filepath')\n",
|
1090 |
+
" with gr.Row(equal_height=True):\n",
|
1091 |
+
" button_text = gr.Button('Text to speech', interactive=True)\n",
|
1092 |
+
" button_audio = gr.Button('Convert audio', interactive=True)\n",
|
1093 |
+
" with gr.Row(equal_height=True):\n",
|
1094 |
+
" speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False) \n",
|
1095 |
+
" \n",
|
1096 |
+
" # actions\n",
|
1097 |
+
" model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
1098 |
+
" then(fn=on_model_tts_select, inputs=[model_tts_dropdown], outputs=[tts_model, language_dropdown, speaker_dropdown]).\\\n",
|
1099 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
1100 |
+
" voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
1101 |
+
" then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\\\n",
|
1102 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
1103 |
+
"\n",
|
1104 |
+
" button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
1105 |
+
" then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice], \n",
|
1106 |
+
" outputs=speech).\\\n",
|
1107 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
1108 |
+
"\n",
|
1109 |
+
" button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\\\n",
|
1110 |
+
" then(fn=voice_clone, inputs=[voice_to_convert, voice_upload], outputs=speech).\\\n",
|
1111 |
+
" then(activate, [button_text, button_audio], [button_text, button_audio])\n",
|
1112 |
+
" \n",
|
1113 |
+
" gr.HTML(article)\n",
|
1114 |
+
"demo.launch(share=False)"
|
1115 |
+
]
|
1116 |
+
}
|
1117 |
+
],
|
1118 |
+
"metadata": {
|
1119 |
+
"kernelspec": {
|
1120 |
+
"display_name": "Python 3",
|
1121 |
+
"language": "python",
|
1122 |
+
"name": "python3"
|
1123 |
+
},
|
1124 |
+
"language_info": {
|
1125 |
+
"codemirror_mode": {
|
1126 |
+
"name": "ipython",
|
1127 |
+
"version": 3
|
1128 |
+
},
|
1129 |
+
"file_extension": ".py",
|
1130 |
+
"mimetype": "text/x-python",
|
1131 |
+
"name": "python",
|
1132 |
+
"nbconvert_exporter": "python",
|
1133 |
+
"pygments_lexer": "ipython3",
|
1134 |
+
"version": "3.7.9"
|
1135 |
+
}
|
1136 |
+
},
|
1137 |
+
"nbformat": 4,
|
1138 |
+
"nbformat_minor": 5
|
1139 |
+
}
|
Coqui.ai.ipynb
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
-
"id": "
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
@@ -19,8 +19,8 @@
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
-
"execution_count":
|
23 |
-
"id": "
|
24 |
"metadata": {
|
25 |
"scrolled": false
|
26 |
},
|
@@ -29,7 +29,7 @@
|
|
29 |
"name": "stdout",
|
30 |
"output_type": "stream",
|
31 |
"text": [
|
32 |
-
"Running on local URL: http://127.0.0.1:
|
33 |
"\n",
|
34 |
"To create a public link, set `share=True` in `launch()`.\n"
|
35 |
]
|
@@ -37,7 +37,7 @@
|
|
37 |
{
|
38 |
"data": {
|
39 |
"text/html": [
|
40 |
-
"<div><iframe src=\"http://127.0.0.1:
|
41 |
],
|
42 |
"text/plain": [
|
43 |
"<IPython.core.display.HTML object>"
|
@@ -50,7 +50,7 @@
|
|
50 |
"data": {
|
51 |
"text/plain": []
|
52 |
},
|
53 |
-
"execution_count":
|
54 |
"metadata": {},
|
55 |
"output_type": "execute_result"
|
56 |
},
|
@@ -58,6 +58,102 @@
|
|
58 |
"name": "stdout",
|
59 |
"output_type": "stream",
|
60 |
"text": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
62 |
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
63 |
" > Model's license - apache 2.0\n",
|
@@ -146,8 +242,8 @@
|
|
146 |
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
147 |
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
148 |
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
149 |
-
" > Processing time:
|
150 |
-
" > Real-time factor:
|
151 |
]
|
152 |
}
|
153 |
],
|
|
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
"execution_count": 1,
|
6 |
+
"id": "e65fcd73",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
|
|
19 |
},
|
20 |
{
|
21 |
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
+
"id": "f902a92c",
|
24 |
"metadata": {
|
25 |
"scrolled": false
|
26 |
},
|
|
|
29 |
"name": "stdout",
|
30 |
"output_type": "stream",
|
31 |
"text": [
|
32 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
33 |
"\n",
|
34 |
"To create a public link, set `share=True` in `launch()`.\n"
|
35 |
]
|
|
|
37 |
{
|
38 |
"data": {
|
39 |
"text/html": [
|
40 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
41 |
],
|
42 |
"text/plain": [
|
43 |
"<IPython.core.display.HTML object>"
|
|
|
50 |
"data": {
|
51 |
"text/plain": []
|
52 |
},
|
53 |
+
"execution_count": 2,
|
54 |
"metadata": {},
|
55 |
"output_type": "execute_result"
|
56 |
},
|
|
|
58 |
"name": "stdout",
|
59 |
"output_type": "stream",
|
60 |
"text": [
|
61 |
+
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
62 |
+
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
63 |
+
" > Model's license - apache 2.0\n",
|
64 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
65 |
+
" > vocoder_models/en/ljspeech/univnet is already downloaded.\n",
|
66 |
+
" > Model's license - apache 2.0\n",
|
67 |
+
" > Check https://choosealicense.com/licenses/apache-2.0/ for more info.\n",
|
68 |
+
" > Using model: Tacotron2\n",
|
69 |
+
" > Setting up Audio Processor...\n",
|
70 |
+
" | > sample_rate:22050\n",
|
71 |
+
" | > resample:False\n",
|
72 |
+
" | > num_mels:80\n",
|
73 |
+
" | > log_func:np.log10\n",
|
74 |
+
" | > min_level_db:-100\n",
|
75 |
+
" | > frame_shift_ms:None\n",
|
76 |
+
" | > frame_length_ms:None\n",
|
77 |
+
" | > ref_level_db:20\n",
|
78 |
+
" | > fft_size:1024\n",
|
79 |
+
" | > power:1.5\n",
|
80 |
+
" | > preemphasis:0.0\n",
|
81 |
+
" | > griffin_lim_iters:60\n",
|
82 |
+
" | > signal_norm:True\n",
|
83 |
+
" | > symmetric_norm:True\n",
|
84 |
+
" | > mel_fmin:50.0\n",
|
85 |
+
" | > mel_fmax:7600.0\n",
|
86 |
+
" | > pitch_fmin:0.0\n",
|
87 |
+
" | > pitch_fmax:640.0\n",
|
88 |
+
" | > spec_gain:1.0\n",
|
89 |
+
" | > stft_pad_mode:reflect\n",
|
90 |
+
" | > max_norm:4.0\n",
|
91 |
+
" | > clip_norm:True\n",
|
92 |
+
" | > do_trim_silence:True\n",
|
93 |
+
" | > trim_db:60\n",
|
94 |
+
" | > do_sound_norm:False\n",
|
95 |
+
" | > do_amp_to_db_linear:True\n",
|
96 |
+
" | > do_amp_to_db_mel:True\n",
|
97 |
+
" | > do_rms_norm:False\n",
|
98 |
+
" | > db_level:None\n",
|
99 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\tts_models--en--ljspeech--tacotron2-DDC_ph\\scale_stats.npy\n",
|
100 |
+
" | > base:10\n",
|
101 |
+
" | > hop_length:256\n",
|
102 |
+
" | > win_length:1024\n",
|
103 |
+
" > Model's reduction rate `r` is set to: 2\n",
|
104 |
+
" > Vocoder Model: univnet\n",
|
105 |
+
" > Setting up Audio Processor...\n",
|
106 |
+
" | > sample_rate:22050\n",
|
107 |
+
" | > resample:False\n",
|
108 |
+
" | > num_mels:80\n",
|
109 |
+
" | > log_func:np.log10\n",
|
110 |
+
" | > min_level_db:-100\n",
|
111 |
+
" | > frame_shift_ms:None\n",
|
112 |
+
" | > frame_length_ms:None\n",
|
113 |
+
" | > ref_level_db:20\n",
|
114 |
+
" | > fft_size:1024\n",
|
115 |
+
" | > power:1.5\n",
|
116 |
+
" | > preemphasis:0.0\n",
|
117 |
+
" | > griffin_lim_iters:60\n",
|
118 |
+
" | > signal_norm:True\n",
|
119 |
+
" | > symmetric_norm:True\n",
|
120 |
+
" | > mel_fmin:50.0\n",
|
121 |
+
" | > mel_fmax:7600.0\n",
|
122 |
+
" | > pitch_fmin:1.0\n",
|
123 |
+
" | > pitch_fmax:640.0\n",
|
124 |
+
" | > spec_gain:1.0\n",
|
125 |
+
" | > stft_pad_mode:reflect\n",
|
126 |
+
" | > max_norm:4.0\n",
|
127 |
+
" | > clip_norm:True\n",
|
128 |
+
" | > do_trim_silence:True\n",
|
129 |
+
" | > trim_db:60\n",
|
130 |
+
" | > do_sound_norm:False\n",
|
131 |
+
" | > do_amp_to_db_linear:True\n",
|
132 |
+
" | > do_amp_to_db_mel:True\n",
|
133 |
+
" | > do_rms_norm:False\n",
|
134 |
+
" | > db_level:None\n",
|
135 |
+
" | > stats_path:C:\\Users\\Torch\\AppData\\Local\\tts\\vocoder_models--en--ljspeech--univnet\\scale_stats.npy\n",
|
136 |
+
" | > base:10\n",
|
137 |
+
" | > hop_length:256\n",
|
138 |
+
" | > win_length:1024\n",
|
139 |
+
" > Generator Model: univnet_generator\n",
|
140 |
+
" > Discriminator Model: univnet_discriminator\n",
|
141 |
+
"model: tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
142 |
+
"language: \n",
|
143 |
+
"speaker: \n",
|
144 |
+
"voice cloning with the voice conversion model\n",
|
145 |
+
" > Text splitted to sentences.\n",
|
146 |
+
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
147 |
+
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
148 |
+
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
149 |
+
" > Processing time: 3.4810001850128174\n",
|
150 |
+
" > Real-time factor: 0.400706095887971\n",
|
151 |
+
" > voice_conversion_models/multilingual/vctk/freevc24 is already downloaded.\n",
|
152 |
+
" > Model's license - MIT\n",
|
153 |
+
" > Check https://choosealicense.com/licenses/mit/ for more info.\n",
|
154 |
+
" > Using model: freevc\n",
|
155 |
+
" > Loading pretrained speaker encoder model ...\n",
|
156 |
+
"Loaded the voice encoder model on cpu in 0.09 seconds.\n",
|
157 |
"Loading TTS model from tts_models/en/ljspeech/tacotron2-DDC_ph\n",
|
158 |
" > tts_models/en/ljspeech/tacotron2-DDC_ph is already downloaded.\n",
|
159 |
" > Model's license - apache 2.0\n",
|
|
|
242 |
"['Mary had a little lamb,', 'Its fleece was white as snow.', 'Everywhere the child went,', 'The little lamb was sure to go.']\n",
|
243 |
"ɛvɹiwɛɹ ðə t͡ʃaɪld wɛnt,\n",
|
244 |
" [!] Character '͡' not found in the vocabulary. Discarding it.\n",
|
245 |
+
" > Processing time: 2.931999921798706\n",
|
246 |
+
" > Real-time factor: 0.3375093879242267\n"
|
247 |
]
|
248 |
}
|
249 |
],
|
app.bak.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from TTS.api import TTS
|
8 |
+
from TTS.utils.manage import ModelManager
|
9 |
+
|
10 |
+
|
11 |
+
title = ""
|
12 |
+
description = """"""
|
13 |
+
article = """"""
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
GPU = device == "cuda"
|
17 |
+
INT16MAX = np.iinfo(np.int16).max
|
18 |
+
|
19 |
+
model_ids = ModelManager(verbose=False).list_models()
|
20 |
+
model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
21 |
+
model_voc_ids = [model for model in model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]
|
22 |
+
model_vc_ids = [model for model in model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
23 |
+
examples_pt = 'examples'
|
24 |
+
allowed_extentions = ['.mp3', '.wav']
|
25 |
+
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
|
26 |
+
verse = """Mary had a little lamb,
|
27 |
+
Its fleece was white as snow.
|
28 |
+
Everywhere the child went,
|
29 |
+
The little lamb was sure to go."""
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def on_model_tts_select(model_name, tts_var):
|
34 |
+
if tts_var is None or tts_var.model_name != model_name:
|
35 |
+
print(f'Loading TTS model from {model_name}')
|
36 |
+
tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
37 |
+
else:
|
38 |
+
print(f'Passing through TTS model {tts_var.model_name}')
|
39 |
+
languages = tts_var.languages if tts_var.is_multi_lingual else ['']
|
40 |
+
speakers = [s.replace('\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting
|
41 |
+
language = languages[0]
|
42 |
+
speaker = speakers[0]
|
43 |
+
return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\
|
44 |
+
gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)
|
45 |
+
|
46 |
+
|
47 |
+
def on_model_vc_select(model_name, vc_var):
|
48 |
+
if vc_var is None or vc_var.model_name != model_name:
|
49 |
+
print(f'Loading voice conversion model from {model_name}')
|
50 |
+
vc_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
51 |
+
else:
|
52 |
+
print(f'Passing through voice conversion model {vc_var.model_name}')
|
53 |
+
return vc_var
|
54 |
+
|
55 |
+
|
56 |
+
def on_voicedropdown(x):
|
57 |
+
return examples[x]
|
58 |
+
|
59 |
+
|
60 |
+
def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):
|
61 |
+
if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):
|
62 |
+
return (16000, np.zeros(0).astype(np.int16))
|
63 |
+
|
64 |
+
sample_rate = tts_model.synthesizer.output_sample_rate
|
65 |
+
if tts_model.is_multi_speaker:
|
66 |
+
speaker = {s.replace('\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting
|
67 |
+
print(f'model: {tts_model.model_name}\nlanguage: {language}\nspeaker: {speaker}')
|
68 |
+
|
69 |
+
language = None if language == '' else language
|
70 |
+
speaker = None if speaker == '' else speaker
|
71 |
+
if use_original_voice:
|
72 |
+
print('Using original voice')
|
73 |
+
speech = tts_model.tts(text, language=language, speaker=speaker)
|
74 |
+
elif tts_model.synthesizer.tts_model.speaker_manager:
|
75 |
+
print('voice cloning with the tts')
|
76 |
+
speech = tts_model.tts(text, language=language, speaker_wav=target_wav)
|
77 |
+
else:
|
78 |
+
print('voice cloning with the voice conversion model')
|
79 |
+
speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)
|
80 |
+
|
81 |
+
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
82 |
+
return (sample_rate, speech)
|
83 |
+
|
84 |
+
|
85 |
+
def voice_clone(vc_model, source_wav, target_wav):
|
86 |
+
print(f'model: {vc_model.model_name}\nsource_wav: {source_wav}\ntarget_wav: {target_wav}')
|
87 |
+
sample_rate = vc_model.voice_converter.output_sample_rate
|
88 |
+
if vc_model is None or source_wav is None or target_wav is None:
|
89 |
+
return (sample_rate, np.zeros(0).astype(np.int16))
|
90 |
+
|
91 |
+
speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)
|
92 |
+
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
93 |
+
return (sample_rate, speech)
|
94 |
+
|
95 |
+
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
tts_model = gr.State(None)
|
98 |
+
vc_model = gr.State(None)
|
99 |
+
def activate(*args):
|
100 |
+
return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
|
101 |
+
def deactivate(*args):
|
102 |
+
return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)
|
103 |
+
|
104 |
+
gr.Markdown(description)
|
105 |
+
|
106 |
+
with gr.Row(equal_height=True):
|
107 |
+
with gr.Column(scale=5, min_width=50):
|
108 |
+
model_tts_dropdown = gr.Dropdown(model_tts_ids, value=model_tts_ids[3], label='Text-to-speech model', interactive=True)
|
109 |
+
with gr.Column(scale=1, min_width=10):
|
110 |
+
language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)
|
111 |
+
with gr.Column(scale=1, min_width=10):
|
112 |
+
speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)
|
113 |
+
with gr.Column(scale=5, min_width=50):
|
114 |
+
with gr.Row(equal_height=True):
|
115 |
+
# model_vocoder_dropdown = gr.Dropdown(model_voc_ids, label='Select vocoder model', interactive=True)
|
116 |
+
model_vc_dropdown = gr.Dropdown(model_vc_ids, value=model_vc_ids[0], label='Voice conversion model', interactive=True)
|
117 |
+
|
118 |
+
with gr.Accordion("Target voice", open=False) as accordion:
|
119 |
+
gr.Markdown("Upload target voice...")
|
120 |
+
with gr.Row(equal_height=True):
|
121 |
+
voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')
|
122 |
+
voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)
|
123 |
+
|
124 |
+
with gr.Row(equal_height=True):
|
125 |
+
with gr.Column(scale=2):
|
126 |
+
with gr.Row(equal_height=True):
|
127 |
+
with gr.Column():
|
128 |
+
text_to_convert = gr.Textbox(verse)
|
129 |
+
orig_voice = gr.Checkbox(label='Use original voice')
|
130 |
+
voice_to_convert = gr.Audio(label="Upload voice to convert", source='upload', type='filepath')
|
131 |
+
with gr.Row(equal_height=True):
|
132 |
+
button_text = gr.Button('Text to speech', interactive=True)
|
133 |
+
button_audio = gr.Button('Convert audio', interactive=True)
|
134 |
+
with gr.Row(equal_height=True):
|
135 |
+
speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False)
|
136 |
+
|
137 |
+
# actions
|
138 |
+
model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
139 |
+
then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
140 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
141 |
+
model_vc_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
142 |
+
then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\
|
143 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
144 |
+
voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
145 |
+
then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
|
146 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
147 |
+
|
148 |
+
button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
149 |
+
then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
150 |
+
then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice],
|
151 |
+
outputs=speech).\
|
152 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
153 |
+
|
154 |
+
button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
155 |
+
then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\
|
156 |
+
then(fn=voice_clone, inputs=[vc_model, voice_to_convert, voice_upload], outputs=speech).\
|
157 |
+
then(activate, [button_text, button_audio], [button_text, button_audio])
|
158 |
+
|
159 |
+
gr.HTML(article)
|
160 |
+
demo.launch(share=False)
|
app.py
CHANGED
@@ -3,6 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
from pathlib import Path
|
|
|
6 |
|
7 |
from TTS.api import TTS
|
8 |
from TTS.utils.manage import ModelManager
|
@@ -15,6 +16,8 @@ article = """"""
|
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
GPU = device == "cuda"
|
17 |
INT16MAX = np.iinfo(np.int16).max
|
|
|
|
|
18 |
|
19 |
model_ids = ModelManager(verbose=False).list_models()
|
20 |
model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
@@ -29,13 +32,8 @@ Everywhere the child went,
|
|
29 |
The little lamb was sure to go."""
|
30 |
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
if tts_var is None or tts_var.model_name != model_name:
|
35 |
-
print(f'Loading TTS model from {model_name}')
|
36 |
-
tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
37 |
-
else:
|
38 |
-
print(f'Passing through TTS model {tts_var.model_name}')
|
39 |
languages = tts_var.languages if tts_var.is_multi_lingual else ['']
|
40 |
speakers = [s.replace('\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting
|
41 |
language = languages[0]
|
@@ -44,28 +42,30 @@ def on_model_tts_select(model_name, tts_var):
|
|
44 |
gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)
|
45 |
|
46 |
|
47 |
-
def on_model_vc_select(model_name, vc_var):
|
48 |
-
if vc_var is None or vc_var.model_name != model_name:
|
49 |
-
print(f'Loading voice conversion model from {model_name}')
|
50 |
-
vc_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
51 |
-
else:
|
52 |
-
print(f'Passing through voice conversion model {vc_var.model_name}')
|
53 |
-
return vc_var
|
54 |
-
|
55 |
-
|
56 |
def on_voicedropdown(x):
|
57 |
return examples[x]
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):
|
61 |
if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):
|
62 |
return (16000, np.zeros(0).astype(np.int16))
|
63 |
-
|
64 |
sample_rate = tts_model.synthesizer.output_sample_rate
|
65 |
if tts_model.is_multi_speaker:
|
66 |
speaker = {s.replace('\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting
|
67 |
print(f'model: {tts_model.model_name}\nlanguage: {language}\nspeaker: {speaker}')
|
68 |
-
|
69 |
language = None if language == '' else language
|
70 |
speaker = None if speaker == '' else speaker
|
71 |
if use_original_voice:
|
@@ -76,44 +76,34 @@ def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_
|
|
76 |
speech = tts_model.tts(text, language=language, speaker_wav=target_wav)
|
77 |
else:
|
78 |
print('voice cloning with the voice conversion model')
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
def voice_clone(vc_model, source_wav, target_wav):
|
86 |
-
print(f'model: {vc_model.model_name}\nsource_wav: {source_wav}\ntarget_wav: {target_wav}')
|
87 |
-
sample_rate = vc_model.voice_converter.output_sample_rate
|
88 |
-
if vc_model is None or source_wav is None or target_wav is None:
|
89 |
-
return (sample_rate, np.zeros(0).astype(np.int16))
|
90 |
|
91 |
-
speech = vc_model.voice_conversion(source_wav=source_wav, target_wav=target_wav)
|
92 |
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
93 |
return (sample_rate, speech)
|
94 |
|
95 |
|
96 |
with gr.Blocks() as demo:
|
97 |
tts_model = gr.State(None)
|
98 |
-
vc_model = gr.State(None)
|
99 |
def activate(*args):
|
100 |
return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
|
101 |
def deactivate(*args):
|
102 |
return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)
|
103 |
|
|
|
104 |
gr.Markdown(description)
|
105 |
|
106 |
with gr.Row(equal_height=True):
|
107 |
with gr.Column(scale=5, min_width=50):
|
108 |
-
model_tts_dropdown = gr.Dropdown(model_tts_ids, value=
|
109 |
with gr.Column(scale=1, min_width=10):
|
110 |
language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)
|
111 |
with gr.Column(scale=1, min_width=10):
|
112 |
speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)
|
113 |
-
with gr.Column(scale=5, min_width=50):
|
114 |
-
with gr.Row(equal_height=True):
|
115 |
-
# model_vocoder_dropdown = gr.Dropdown(model_voc_ids, label='Select vocoder model', interactive=True)
|
116 |
-
model_vc_dropdown = gr.Dropdown(model_vc_ids, value=model_vc_ids[0], label='Voice conversion model', interactive=True)
|
117 |
|
118 |
with gr.Accordion("Target voice", open=False) as accordion:
|
119 |
gr.Markdown("Upload target voice...")
|
@@ -136,24 +126,19 @@ with gr.Blocks() as demo:
|
|
136 |
|
137 |
# actions
|
138 |
model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
139 |
-
then(fn=on_model_tts_select, inputs=[model_tts_dropdown
|
140 |
-
then(activate, [button_text, button_audio], [button_text, button_audio])
|
141 |
-
model_vc_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
142 |
-
then(fn=on_model_vc_select, inputs=[model_vc_dropdown, vc_model], outputs=vc_model).\
|
143 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
144 |
voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
145 |
then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
|
146 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
147 |
-
|
148 |
button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
149 |
-
then(fn=on_model_tts_select, inputs=[model_tts_dropdown, tts_model], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
150 |
then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice],
|
151 |
outputs=speech).\
|
152 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
153 |
|
154 |
button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
155 |
-
then(fn=
|
156 |
-
then(fn=voice_clone, inputs=[vc_model, voice_to_convert, voice_upload], outputs=speech).\
|
157 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
158 |
|
159 |
gr.HTML(article)
|
|
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
5 |
from pathlib import Path
|
6 |
+
import tempfile
|
7 |
|
8 |
from TTS.api import TTS
|
9 |
from TTS.utils.manage import ModelManager
|
|
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
GPU = device == "cuda"
|
18 |
INT16MAX = np.iinfo(np.int16).max
|
19 |
+
VC_MODEL = TTS(model_name='voice_conversion_models/multilingual/vctk/freevc24', progress_bar=False, gpu=GPU)
|
20 |
+
|
21 |
|
22 |
model_ids = ModelManager(verbose=False).list_models()
|
23 |
model_tts_ids = [model for model in model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
|
|
|
32 |
The little lamb was sure to go."""
|
33 |
|
34 |
|
35 |
+
def on_model_tts_select(model_name):
|
36 |
+
tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
|
|
|
|
|
|
|
|
|
|
|
37 |
languages = tts_var.languages if tts_var.is_multi_lingual else ['']
|
38 |
speakers = [s.replace('\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting
|
39 |
language = languages[0]
|
|
|
42 |
gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)
|
43 |
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def on_voicedropdown(x):
|
46 |
return examples[x]
|
47 |
|
48 |
|
49 |
+
def voice_clone(source_wav, target_wav):
|
50 |
+
print(f'model: {VC_MODEL.model_name}\nsource_wav: {source_wav}\ntarget_wav: {target_wav}')
|
51 |
+
sample_rate = VC_MODEL.voice_converter.output_sample_rate
|
52 |
+
if source_wav is None or target_wav is None:
|
53 |
+
return (sample_rate, np.zeros(0).astype(np.int16))
|
54 |
+
|
55 |
+
speech = VC_MODEL.voice_conversion(source_wav=source_wav, target_wav=target_wav)
|
56 |
+
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
57 |
+
return (sample_rate, speech)
|
58 |
+
|
59 |
+
|
60 |
def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):
|
61 |
if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):
|
62 |
return (16000, np.zeros(0).astype(np.int16))
|
63 |
+
|
64 |
sample_rate = tts_model.synthesizer.output_sample_rate
|
65 |
if tts_model.is_multi_speaker:
|
66 |
speaker = {s.replace('\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting
|
67 |
print(f'model: {tts_model.model_name}\nlanguage: {language}\nspeaker: {speaker}')
|
68 |
+
|
69 |
language = None if language == '' else language
|
70 |
speaker = None if speaker == '' else speaker
|
71 |
if use_original_voice:
|
|
|
76 |
speech = tts_model.tts(text, language=language, speaker_wav=target_wav)
|
77 |
else:
|
78 |
print('voice cloning with the voice conversion model')
|
79 |
+
# speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)
|
80 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
81 |
+
# Lazy code... save it to a temp file to resample it while reading it for VC
|
82 |
+
tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)
|
83 |
+
speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)
|
84 |
+
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
86 |
speech = (np.array(speech) * INT16MAX).astype(np.int16)
|
87 |
return (sample_rate, speech)
|
88 |
|
89 |
|
90 |
with gr.Blocks() as demo:
|
91 |
tts_model = gr.State(None)
|
|
|
92 |
def activate(*args):
|
93 |
return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
|
94 |
def deactivate(*args):
|
95 |
return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)
|
96 |
|
97 |
+
|
98 |
gr.Markdown(description)
|
99 |
|
100 |
with gr.Row(equal_height=True):
|
101 |
with gr.Column(scale=5, min_width=50):
|
102 |
+
model_tts_dropdown = gr.Dropdown(model_tts_ids, value=None, label='Text-to-speech model', interactive=True)
|
103 |
with gr.Column(scale=1, min_width=10):
|
104 |
language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)
|
105 |
with gr.Column(scale=1, min_width=10):
|
106 |
speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)
|
|
|
|
|
|
|
|
|
107 |
|
108 |
with gr.Accordion("Target voice", open=False) as accordion:
|
109 |
gr.Markdown("Upload target voice...")
|
|
|
126 |
|
127 |
# actions
|
128 |
model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
129 |
+
then(fn=on_model_tts_select, inputs=[model_tts_dropdown], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
|
|
|
|
|
|
|
130 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
131 |
voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
132 |
then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
|
133 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
134 |
+
|
135 |
button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
|
|
136 |
then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice],
|
137 |
outputs=speech).\
|
138 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
139 |
|
140 |
button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
|
141 |
+
then(fn=voice_clone, inputs=[voice_to_convert, voice_upload], outputs=speech).\
|
|
|
142 |
then(activate, [button_text, button_audio], [button_text, button_audio])
|
143 |
|
144 |
gr.HTML(article)
|