Spaces:
Build error
Build error
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification | |
import gradio as gr | |
import os | |
import spacy | |
nlp = spacy.load('en_core_web_sm') | |
auth_token = os.environ.get("HF_Token") | |
##Speech Recognition | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
def transcribe(audio): | |
text = asr(audio)["text"] | |
return text | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
return text | |
##Summarization | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
def summarize_text(text): | |
stext = summarizer(text) | |
return stext | |
##Fiscal Sentiment | |
fin_model = pipeline("text-classification", model="demo-org/auditor_review_model", \ | |
tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token) | |
def text_to_sentiment(text): | |
sentiment = fin_model(text)[0]["label"] | |
return sentiment | |
##Company Extraction | |
def fin_ner(text): | |
print ("ner") | |
#ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER") | |
api = gr.Interface.load("dslim/bert-base-NER", src='models') | |
replaced_spans = api(text) | |
print (replaced_spans) | |
print ("spans2") | |
#replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans] | |
return replaced_spans | |
##Fiscal Sentiment by Sentence | |
def fin_ext(text): | |
doc = nlp(text) | |
doc_sents = [sent for sent in doc.sents] | |
sents_list = [] | |
for sent in doc.sents: | |
sents_list.append(sent.text) | |
results = fin_model(sents_list) | |
results_list = [] | |
for i in range(len(results)): | |
results_list.append(results[i]['label']) | |
fin_spans = [] | |
fin_spans = list(zip(sents_list,results_list)) | |
return fin_spans | |
demo = gr.Blocks() | |
with demo: | |
audio_file = gr.inputs.Audio(source="microphone", type="filepath") | |
b1 = gr.Button("Recognize Speech") | |
text = gr.Textbox() | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
b2 = gr.Button("Summarize Text") | |
stext = gr.Textbox() | |
b2.click(summarize_text, inputs=text, outputs=stext) | |
b3 = gr.Button("Classify Overall Financial Sentiment") | |
label = gr.Label() | |
b3.click(text_to_sentiment, inputs=stext, outputs=label) | |
b4 = gr.Button("Extract Companies & Segments") | |
replaced_spans = gr.HighlightedText() | |
b4.click(fin_ner, inputs=text, outputs=replaced_spans) | |
b5 = gr.Button("Extract Financial Sentiment") | |
fin_spans = gr.HighlightedText() | |
b5.click(fin_ext, inputs=text, outputs=fin_spans) | |
demo.launch() |