rahulshah63 commited on
Commit
f5c6e96
·
1 Parent(s): 990f25d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -5,6 +5,7 @@ import gradio as gr
5
  import matplotlib.pyplot as plt
6
  import numpy as np
7
  from scipy.io.wavfile import write
 
8
  import wave
9
 
10
  device="cpu"
@@ -61,7 +62,7 @@ def inference(text):
61
  with torch.no_grad():
62
  sequence = np.array(text_to_sequence(i, ['transliteration_cleaners']))[None, :]
63
  sequence = torch.autograd.Variable(torch.from_numpy(sequence)).to(device).long()
64
- mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence)
65
  # plot_data((mel_outputs_postnet.float().data.cpu().numpy()[0], alignments.float().data.cpu().numpy()[0].T))
66
  audio = waveglow.infer(mel_outputs_postnet, sigma=0.8)
67
 
@@ -79,7 +80,7 @@ def inference(text):
79
 
80
  # sequence = np.array(text_to_sequence(i, ['transliteration_cleaners']))[None, :]
81
  # sequence = torch.autograd.Variable(torch.from_numpy(sequence)).to(device).long()
82
- # mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence)
83
  # audio = hifigan(mel_outputs_postnet.float()).to("cpu")
84
  # audio = audio * MAX_WAV_VALUE
85
  # data = audio.squeeze().detach().cpu().numpy()
 
5
  import matplotlib.pyplot as plt
6
  import numpy as np
7
  from scipy.io.wavfile import write
8
+ from text import symbols, text_to_sequence
9
  import wave
10
 
11
  device="cpu"
 
62
  with torch.no_grad():
63
  sequence = np.array(text_to_sequence(i, ['transliteration_cleaners']))[None, :]
64
  sequence = torch.autograd.Variable(torch.from_numpy(sequence)).to(device).long()
65
+ mel_outputs, mel_outputs_postnet, _, alignments = tacotron2.inference(sequence)
66
  # plot_data((mel_outputs_postnet.float().data.cpu().numpy()[0], alignments.float().data.cpu().numpy()[0].T))
67
  audio = waveglow.infer(mel_outputs_postnet, sigma=0.8)
68
 
 
80
 
81
  # sequence = np.array(text_to_sequence(i, ['transliteration_cleaners']))[None, :]
82
  # sequence = torch.autograd.Variable(torch.from_numpy(sequence)).to(device).long()
83
+ # mel_outputs, mel_outputs_postnet, _, alignments = tacotron2.inference(sequence)
84
  # audio = hifigan(mel_outputs_postnet.float()).to("cpu")
85
  # audio = audio * MAX_WAV_VALUE
86
  # data = audio.squeeze().detach().cpu().numpy()