rahulshah63's picture
Update app.py
c062c5b
import sys
sys.path.append('tacotron2/')
sys.path.append('tacotron2/waveglow')
import torch
import os
import torchaudio
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from scipy.io.wavfile import write
from text import symbols, text_to_sequence
import wave
device="cpu"
# Load Nvidia Tacotron2 from Hub
tacotron2 = torch.hub.load(
"NVIDIA/DeepLearningExamples:torchhub",
"nvidia_tacotron2",
model_math='fp32',
pretrained=False,
)
# Load Weights and bias of nepali text
tacotron2_checkpoint_path = os.path.join(os.getcwd(), 'model_E45.ckpt')
state_dict = torch.load(tacotron2_checkpoint_path, map_location=device)
tacotron2.load_state_dict(state_dict)
tacotron2 = tacotron2.to(device)
tacotron2.eval()
# Load Nvidia Waveglow from Hub
waveglow = torch.hub.load(
"NVIDIA/DeepLearningExamples:torchhub",
"nvidia_waveglow",
model_math="fp32",
pretrained=False,
)
checkpoint = torch.hub.load_state_dict_from_url(
"https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth", # noqa: E501
progress=False,
map_location=device,
)
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
waveglow.load_state_dict(state_dict)
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()
# ERR: module glow not found
# waveglow_pretrained_model = os.path.join(os.getcwd(), 'waveglow_256channels_ljs_v3.pt')
# waveglow = torch.load(waveglow_pretrained_model, map_location=device)['model']
# waveglow = waveglow.to(device)
# waveglow.eval()
# Load Nvidia Utils from Hub
# utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_tts_utils')
# sequences, lengths = utils.prepare_input_sequence([text])
def inference(text):
for i in [x for x in text.split("\n") if len(x)]:
if i[-1] != ";": i=i+";"
with torch.no_grad():
sequence = np.array(text_to_sequence(i, ['transliteration_cleaners']))[None, :]
sequence = torch.autograd.Variable(torch.from_numpy(sequence)).to(device).long()
mel_outputs, mel_outputs_postnet, _, alignments = tacotron2.inference(sequence)
# plot_data((mel_outputs_postnet.float().data.cpu().numpy()[0], alignments.float().data.cpu().numpy()[0].T))
audio = waveglow.infer(mel_outputs_postnet, sigma=0.8)
#Save Mel Spectrogram
plt.imshow(mel_outputs_postnet[0].cpu().detach())
plt.axis('off')
plt.savefig("test.png", bbox_inches='tight')
#Save Audio
audio_numpy = audio[0].data.cpu().numpy()
rate = 22050
write("output1.wav", rate, audio_numpy)
torchaudio.save("output2.wav", audio[0:1].cpu(), sample_rate=rate)
# sequence = np.array(text_to_sequence(i, ['transliteration_cleaners']))[None, :]
# sequence = torch.autograd.Variable(torch.from_numpy(sequence)).to(device).long()
# mel_outputs, mel_outputs_postnet, _, alignments = tacotron2.inference(sequence)
# audio = hifigan(mel_outputs_postnet.float()).to("cpu")
# audio = audio * MAX_WAV_VALUE
# data = audio.squeeze().detach().cpu().numpy()
# rate = 22050
# scaled = np.int16(data / np.max(np.abs(data)) * 32767)
# write('test.wav', rate, scaled)
# concatenate_audio_wave(["output.wav","test.wav"],"output.wav")
# with torch.no_grad():
# sequences, lengths = utils.prepare_input_sequence([text])
# sequences = sequences.to(device)
# lengths = lengths.to(device)
# mel, _, _ = tacotron2.infer(sequences, lengths)
# audio = waveglow.infer(mel)
# #Save Mel Spectrogram
# plt.imshow(mel[0].cpu().detach())
# plt.axis('off')
# plt.savefig("test.png", bbox_inches='tight')
# #Save Audio
# audio_numpy = audio[0].data.cpu().numpy()
# rate = 22050
# write("output1.wav", rate, audio_numpy)
# torchaudio.save("output2.wav", audio[0:1].cpu(), sample_rate=22050)
return "output1.wav", "output2.wav", "test.png"
title="TACOTRON 2"
description="Nepali Speech TACOTRON 2: The Tacotron 2 model for generating mel spectrograms from text. To use it, simply add you text or click on one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1712.05884' target='_blank'>Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions</a> | <a href='https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2' target='_blank'>Github Repo</a></p>"
examples=[["म नेपाली टिटिएस हुँ"]]
gr.Interface(inference,"text",[gr.outputs.Audio(type="file",label="Audio"),gr.outputs.Image(type="file",label="Spectrogram")],title=title,description=description,article=article,examples=examples).launch(enable_queue=True)