####################################################### # Convert Diffusers Flux/Flex to diffusion model ComfyUI safetensors file # This will only have the transformer weights, not the TEs and VAE # You can save the transformer weights as bf16 or 8-bit with the --do_8_bit flag # You can also save with scaled 8-bit using the --do_8bit_scaled flag # # Call like this for 8-bit transformer weights with stochastic rounding: # python convert_diffusers_to_comfy_transformer_only.py /path/to/diffusers/checkpoint /output/path/my_finetune.safetensors --do_8_bit # # Call like this for 8-bit transformer weights with scaling: # python convert_diffusers_to_comfy_transformer_only.py /path/to/diffusers/checkpoint /output/path/my_finetune.safetensors --do_8bit_scaled # # Call like this for bf16 transformer weights: # python convert_diffusers_to_comfy_transformer_only.py /path/to/diffusers/checkpoint /output/path/my_finetune.safetensors # # Output should go in ComfyUI/models/diffusion_models/ # ####################################################### import argparse from datetime import date import json import os from pathlib import Path import safetensors import safetensors.torch import torch import tqdm from collections import OrderedDict parser = argparse.ArgumentParser() parser.add_argument("diffusers_path", type=str, help="Path to the original Flux diffusers folder.") parser.add_argument("flux_path", type=str, help="Output path for the Flux safetensors file.") parser.add_argument("--do_8_bit", action="store_true", help="Use 8-bit weights with stochastic rounding instead of bf16.") parser.add_argument("--do_8bit_scaled", action="store_true", help="Use scaled 8-bit weights instead of bf16.") args = parser.parse_args() flux_path = Path(args.flux_path) diffusers_path = Path(args.diffusers_path) if os.path.exists(os.path.join(diffusers_path, "transformer")): diffusers_path = Path(os.path.join(diffusers_path, "transformer")) do_8_bit = args.do_8_bit do_8bit_scaled = args.do_8bit_scaled # Don't allow both flags to be active simultaneously if do_8_bit and do_8bit_scaled: print("Error: Cannot use both --do_8_bit and --do_8bit_scaled at the same time.") exit() if not os.path.exists(flux_path.parent): os.makedirs(flux_path.parent) if not diffusers_path.exists(): print(f"Error: Missing transformer folder: {diffusers_path}") exit() original_json_path = Path.joinpath( diffusers_path, "diffusion_pytorch_model.safetensors.index.json") if not original_json_path.exists(): print(f"Error: Missing transformer index json: {original_json_path}") exit() with open(original_json_path, "r", encoding="utf-8") as f: original_json = json.load(f) diffusers_map = { "time_in.in_layer.weight": [ "time_text_embed.timestep_embedder.linear_1.weight", ], "time_in.in_layer.bias": [ "time_text_embed.timestep_embedder.linear_1.bias", ], "time_in.out_layer.weight": [ "time_text_embed.timestep_embedder.linear_2.weight", ], "time_in.out_layer.bias": [ "time_text_embed.timestep_embedder.linear_2.bias", ], "vector_in.in_layer.weight": [ "time_text_embed.text_embedder.linear_1.weight", ], "vector_in.in_layer.bias": [ "time_text_embed.text_embedder.linear_1.bias", ], "vector_in.out_layer.weight": [ "time_text_embed.text_embedder.linear_2.weight", ], "vector_in.out_layer.bias": [ "time_text_embed.text_embedder.linear_2.bias", ], "guidance_in.in_layer.weight": [ "time_text_embed.guidance_embedder.linear_1.weight", ], "guidance_in.in_layer.bias": [ "time_text_embed.guidance_embedder.linear_1.bias", ], "guidance_in.out_layer.weight": [ "time_text_embed.guidance_embedder.linear_2.weight", ], "guidance_in.out_layer.bias": [ "time_text_embed.guidance_embedder.linear_2.bias", ], "txt_in.weight": [ "context_embedder.weight", ], "txt_in.bias": [ "context_embedder.bias", ], "img_in.weight": [ "x_embedder.weight", ], "img_in.bias": [ "x_embedder.bias", ], "double_blocks.().img_mod.lin.weight": [ "norm1.linear.weight", ], "double_blocks.().img_mod.lin.bias": [ "norm1.linear.bias", ], "double_blocks.().txt_mod.lin.weight": [ "norm1_context.linear.weight", ], "double_blocks.().txt_mod.lin.bias": [ "norm1_context.linear.bias", ], "double_blocks.().img_attn.qkv.weight": [ "attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", ], "double_blocks.().img_attn.qkv.bias": [ "attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", ], "double_blocks.().txt_attn.qkv.weight": [ "attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight", ], "double_blocks.().txt_attn.qkv.bias": [ "attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias", ], "double_blocks.().img_attn.norm.query_norm.scale": [ "attn.norm_q.weight", ], "double_blocks.().img_attn.norm.key_norm.scale": [ "attn.norm_k.weight", ], "double_blocks.().txt_attn.norm.query_norm.scale": [ "attn.norm_added_q.weight", ], "double_blocks.().txt_attn.norm.key_norm.scale": [ "attn.norm_added_k.weight", ], "double_blocks.().img_mlp.0.weight": [ "ff.net.0.proj.weight", ], "double_blocks.().img_mlp.0.bias": [ "ff.net.0.proj.bias", ], "double_blocks.().img_mlp.2.weight": [ "ff.net.2.weight", ], "double_blocks.().img_mlp.2.bias": [ "ff.net.2.bias", ], "double_blocks.().txt_mlp.0.weight": [ "ff_context.net.0.proj.weight", ], "double_blocks.().txt_mlp.0.bias": [ "ff_context.net.0.proj.bias", ], "double_blocks.().txt_mlp.2.weight": [ "ff_context.net.2.weight", ], "double_blocks.().txt_mlp.2.bias": [ "ff_context.net.2.bias", ], "double_blocks.().img_attn.proj.weight": [ "attn.to_out.0.weight", ], "double_blocks.().img_attn.proj.bias": [ "attn.to_out.0.bias", ], "double_blocks.().txt_attn.proj.weight": [ "attn.to_add_out.weight", ], "double_blocks.().txt_attn.proj.bias": [ "attn.to_add_out.bias", ], "single_blocks.().modulation.lin.weight": [ "norm.linear.weight", ], "single_blocks.().modulation.lin.bias": [ "norm.linear.bias", ], "single_blocks.().linear1.weight": [ "attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight", ], "single_blocks.().linear1.bias": [ "attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias", ], "single_blocks.().linear2.weight": [ "proj_out.weight", ], "single_blocks.().norm.query_norm.scale": [ "attn.norm_q.weight", ], "single_blocks.().norm.key_norm.scale": [ "attn.norm_k.weight", ], "single_blocks.().linear2.weight": [ "proj_out.weight", ], "single_blocks.().linear2.bias": [ "proj_out.bias", ], "final_layer.linear.weight": [ "proj_out.weight", ], "final_layer.linear.bias": [ "proj_out.bias", ], "final_layer.adaLN_modulation.1.weight": [ "norm_out.linear.weight", ], "final_layer.adaLN_modulation.1.bias": [ "norm_out.linear.bias", ], } def is_in_diffusers_map(k): for values in diffusers_map.values(): for value in values: if k.endswith(value): return True return False diffusers = {k: Path.joinpath(diffusers_path, v) for k, v in original_json["weight_map"].items() if is_in_diffusers_map(k)} original_safetensors = set(diffusers.values()) # determine the number of transformer blocks transformer_blocks = 0 single_transformer_blocks = 0 for key in diffusers.keys(): print(key) if key.startswith("transformer_blocks."): print(key) block = int(key.split(".")[1]) if block >= transformer_blocks: transformer_blocks = block + 1 elif key.startswith("single_transformer_blocks."): block = int(key.split(".")[1]) if block >= single_transformer_blocks: single_transformer_blocks = block + 1 print(f"Transformer blocks: {transformer_blocks}") print(f"Single transformer blocks: {single_transformer_blocks}") for file in original_safetensors: if not file.exists(): print(f"Error: Missing transformer safetensors file: {file}") exit() original_safetensors = {f: safetensors.safe_open( f, framework="pt", device="cpu") for f in original_safetensors} def swap_scale_shift(weight): shift, scale = weight.chunk(2, dim=0) new_weight = torch.cat([scale, shift], dim=0) return new_weight flux_values = {} for b in range(transformer_blocks): for key, weights in diffusers_map.items(): if key.startswith("double_blocks."): block_prefix = f"transformer_blocks.{b}." found = True for weight in weights: if not (f"{block_prefix}{weight}" in diffusers): found = False if found: flux_values[key.replace("()", f"{b}")] = [ f"{block_prefix}{weight}" for weight in weights] for b in range(single_transformer_blocks): for key, weights in diffusers_map.items(): if key.startswith("single_blocks."): block_prefix = f"single_transformer_blocks.{b}." found = True for weight in weights: if not (f"{block_prefix}{weight}" in diffusers): found = False if found: flux_values[key.replace("()", f"{b}")] = [ f"{block_prefix}{weight}" for weight in weights] for key, weights in diffusers_map.items(): if not (key.startswith("double_blocks.") or key.startswith("single_blocks.")): found = True for weight in weights: if not (f"{weight}" in diffusers): found = False if found: flux_values[key] = [f"{weight}" for weight in weights] flux = {} for key, values in tqdm.tqdm(flux_values.items()): if len(values) == 1: flux[key] = original_safetensors[diffusers[values[0]] ].get_tensor(values[0]).to("cpu") else: flux[key] = torch.cat( [ original_safetensors[diffusers[value] ].get_tensor(value).to("cpu") for value in values ] ) if "norm_out.linear.weight" in diffusers: flux["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift( original_safetensors[diffusers["norm_out.linear.weight"]].get_tensor( "norm_out.linear.weight").to("cpu") ) if "norm_out.linear.bias" in diffusers: flux["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift( original_safetensors[diffusers["norm_out.linear.bias"]].get_tensor( "norm_out.linear.bias").to("cpu") ) def stochastic_round_to(tensor, dtype=torch.float8_e4m3fn): # Define the float8 range min_val = torch.finfo(dtype).min max_val = torch.finfo(dtype).max # Clip values to float8 range tensor = torch.clamp(tensor, min_val, max_val) # Convert to float32 for calculations tensor = tensor.float() # Get the nearest representable float8 values lower = torch.floor(tensor * 256) / 256 upper = torch.ceil(tensor * 256) / 256 # Calculate the probability of rounding up prob = (tensor - lower) / (upper - lower) # Generate random values for stochastic rounding rand = torch.rand_like(tensor) # Perform stochastic rounding rounded = torch.where(rand < prob, upper, lower) # Convert back to float8 return rounded.to(dtype) # List of keys that should not be scaled (usually embedding layers and biases) blacklist = [] for key in flux.keys(): if not key.endswith(".weight") or "embed" in key: blacklist.append(key) # Function to scale weights for 8-bit quantization def scale_weights_to_8bit(tensor, max_value=416.0, dtype=torch.float8_e4m3fn): # Get the limits of the dtype min_val = torch.finfo(dtype).min max_val = torch.finfo(dtype).max # Only process 2D tensors that are not in the blacklist if tensor.dim() == 2: # Calculate the scaling factor abs_max = torch.max(torch.abs(tensor)) scale = abs_max / max_value # Scale the tensor and clip to float8 range scaled_tensor = (tensor / scale).clip(min=min_val, max=max_val).to(dtype) return scaled_tensor, scale else: # For tensors that shouldn't be scaled, just convert to float8 return tensor.clip(min=min_val, max=max_val).to(dtype), None # set all the keys to appropriate dtype if do_8_bit: print("Converting to 8-bit with stochastic rounding...") for key in flux.keys(): flux[key] = stochastic_round_to( flux[key], torch.float8_e4m3fn).to('cpu') elif do_8bit_scaled: print("Converting to scaled 8-bit...") scales = {} for key in tqdm.tqdm(flux.keys()): if key.endswith(".weight") and key not in blacklist: flux[key], scale = scale_weights_to_8bit(flux[key]) if scale is not None: scale_key = key[:-len(".weight")] + ".scale_weight" scales[scale_key] = scale else: # For non-weight tensors or blacklisted ones, just convert without scaling min_val = torch.finfo(torch.float8_e4m3fn).min max_val = torch.finfo(torch.float8_e4m3fn).max flux[key] = flux[key].clip(min=min_val, max=max_val).to(torch.float8_e4m3fn).to('cpu') # Add all the scales to the flux dictionary flux.update(scales) # Add a marker tensor to indicate this is a scaled fp8 model flux["scaled_fp8"] = torch.tensor([]).to(torch.float8_e4m3fn) else: print("Converting to bfloat16...") for key in flux.keys(): flux[key] = flux[key].clone().to('cpu', torch.bfloat16) meta = OrderedDict() meta['format'] = 'pt' # date format like 2024-08-01 YYYY-MM-DD meta['modelspec.date'] = date.today().strftime("%Y-%m-%d") os.makedirs(os.path.dirname(flux_path), exist_ok=True) print(f"Saving to {flux_path}") safetensors.torch.save_file(flux, flux_path, metadata=meta) print("Done.")