Spaces:
Running
Running
File size: 10,500 Bytes
fcc02a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import gc
import math
import os
import torch
from typing import Literal
from PIL import Image, ImageFilter, ImageOps
from PIL.ImageOps import exif_transpose
from tqdm import tqdm
from torchvision import transforms
# supress all warnings
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
def flush(garbage_collect=True):
torch.cuda.empty_cache()
if garbage_collect:
gc.collect()
ControlTypes = Literal['depth', 'pose', 'line', 'inpaint', 'mask']
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp']
class ControlGenerator:
def __init__(self, device, sd=None):
self.device = device
self.sd = sd # optional. It will unload the model if not None
self.has_unloaded = False
self.control_depth_model = None
self.control_pose_model = None
self.control_line_model = None
self.control_bg_remover = None
self.debug = False
self.regen = False
def get_control_path(self, img_path, control_type: ControlTypes):
if self.regen:
return self._generate_control(img_path, control_type)
coltrols_folder = os.path.join(os.path.dirname(img_path), '_controls')
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]
file_name_no_ext_control = f"{file_name_no_ext}.{control_type}"
for ext in img_ext_list:
possible_path = os.path.join(
coltrols_folder, file_name_no_ext_control + ext)
if os.path.exists(possible_path):
return possible_path
# if we get here, we need to generate the control
return self._generate_control(img_path, control_type)
def debug_print(self, *args, **kwargs):
if self.debug:
print(*args, **kwargs)
def _generate_control(self, img_path, control_type):
device = self.device
image: Image = None
coltrols_folder = os.path.join(os.path.dirname(img_path), '_controls')
file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]
# we need to generate the control. Unload model if not unloaded
if not self.has_unloaded:
if self.sd is not None:
print("Unloading model to generate controls")
self.sd.set_device_state_preset('unload')
self.has_unloaded = True
if image is None:
# make sure image is loaded if we havent loaded it with another control
image = Image.open(img_path).convert('RGB')
image = exif_transpose(image)
# resize to a max of 1mp
max_size = 1024 * 1024
w, h = image.size
if w * h > max_size:
scale = math.sqrt(max_size / (w * h))
w = int(w * scale)
h = int(h * scale)
image = image.resize((w, h), Image.BICUBIC)
save_path = os.path.join(
coltrols_folder, f"{file_name_no_ext}.{control_type}.jpg")
os.makedirs(coltrols_folder, exist_ok=True)
if control_type == 'depth':
self.debug_print("Generating depth control")
if self.control_depth_model is None:
from transformers import pipeline
self.control_depth_model = pipeline(
task="depth-estimation",
model="depth-anything/Depth-Anything-V2-Large-hf",
device=device,
torch_dtype=torch.float16
)
img = image.copy()
in_size = img.size
output = self.control_depth_model(img)
out_tensor = output["predicted_depth"] # shape (1, H, W) 0 - 255
out_tensor = out_tensor.clamp(0, 255)
out_tensor = out_tensor.squeeze(0).cpu().numpy()
img = Image.fromarray(out_tensor.astype('uint8'))
img = img.resize(in_size, Image.LANCZOS)
img.save(save_path)
return save_path
elif control_type == 'pose':
self.debug_print("Generating pose control")
if self.control_pose_model is None:
try:
import onnxruntime
onnxruntime.set_default_logger_severity(3)
except ImportError:
raise ImportError(
"onnxruntime is not installed. Please install it with pip install onnxruntime or onnxruntime-gpu")
try:
from easy_dwpose import DWposeDetector
self.control_pose_model = DWposeDetector(
device=str(device))
except ImportError:
raise ImportError(
"easy-dwpose is not installed. Please install it with pip install easy-dwpose")
img = image.copy()
detect_res = int(math.sqrt(img.size[0] * img.size[1]))
img = self.control_pose_model(
img, output_type="pil", include_hands=True, include_face=True, detect_resolution=detect_res)
img = img.convert('RGB')
img.save(save_path)
return save_path
elif control_type == 'line':
self.debug_print("Generating line control")
if self.control_line_model is None:
from controlnet_aux import TEEDdetector
self.control_line_model = TEEDdetector.from_pretrained(
"fal-ai/teed", filename="5_model.pth").to(device)
img = image.copy()
img = self.control_line_model(img, detect_resolution=1024)
# apply threshold
# img = img.filter(ImageFilter.GaussianBlur(radius=1))
img = img.point(lambda p: p > 128 and 255)
img = img.convert('RGB')
img.save(save_path)
return save_path
elif control_type == 'inpaint' or control_type == 'mask':
self.debug_print("Generating inpaint/mask control")
img = image.copy()
if self.control_bg_remover is None:
from transformers import AutoModelForImageSegmentation
self.control_bg_remover = AutoModelForImageSegmentation.from_pretrained(
'ZhengPeng7/BiRefNet_HR',
trust_remote_code=True,
revision="595e212b3eaa6a1beaad56cee49749b1e00b1596",
torch_dtype=torch.float16
).to(device)
self.control_bg_remover.eval()
image_size = (1024, 1024)
transform_image = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [
0.229, 0.224, 0.225])
])
input_images = transform_image(img).unsqueeze(
0).to('cuda').to(torch.float16)
# Prediction
preds = self.control_bg_remover(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(img.size)
if control_type == 'inpaint':
# inpainting feature currently only supports "erased" section desired to inpaint
mask = ImageOps.invert(mask)
img.putalpha(mask)
save_path = os.path.join(
coltrols_folder, f"{file_name_no_ext}.{control_type}.webp")
else:
img = mask
img = img.convert('RGB')
img.save(save_path)
return save_path
else:
raise Exception(f"Error: unknown control type {control_type}")
def cleanup(self):
if self.control_depth_model is not None:
self.control_depth_model = None
if self.control_pose_model is not None:
self.control_pose_model = None
if self.control_line_model is not None:
self.control_line_model = None
if self.control_bg_remover is not None:
self.control_bg_remover = None
if self.sd is not None and self.has_unloaded:
self.sd.restore_device_state()
self.has_unloaded = False
flush()
if __name__ == "__main__":
import sys
import argparse
import time
import transformers
transformers.logging.set_verbosity_error()
control_times = {
'depth': 0,
'pose': 0,
'line': 0,
'inpaint': 0,
'mask': 0
}
controls = control_times.keys()
parser = argparse.ArgumentParser(description="Generate control images")
parser.add_argument("img_dir", type=str, help="Path to image directory")
parser.add_argument('--debug', action='store_true',
help="Enable debug mode")
parser.add_argument('--regen', action='store_true',
help="Regenerate all controls")
args = parser.parse_args()
img_dir = args.img_dir
if not os.path.exists(img_dir):
print(f"Error: {img_dir} does not exist")
exit()
if not os.path.isdir(img_dir):
print(f"Error: {img_dir} is not a directory")
exit()
# find images
img_list = []
for root, dirs, files in os.walk(img_dir):
for file in files:
if "_controls" in root:
continue
if file.startswith('.'):
continue
if file.lower().endswith(tuple(img_ext_list)):
img_list.append(os.path.join(root, file))
if len(img_list) == 0:
print(f"Error: no images found in {img_dir}")
exit()
# load model
idx = 0
for img_path in tqdm(img_list):
for control in controls:
start = time.time()
control_gen = ControlGenerator(torch.device('cuda'))
control_gen.debug = args.debug
control_gen.regen = args.regen
control_path = control_gen.get_control_path(img_path, control)
end = time.time()
# dont track for first 2 images
if idx < 2:
continue
control_times[control] += end - start
idx += 1
# determine avgt time
for control in controls:
control_times[control] /= (idx - 2)
print(
f"Avg time for {control} control: {control_times[control]:.2f} seconds")
print("Done")
|