File size: 10,500 Bytes
fcc02a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gc
import math
import os
import torch
from typing import Literal
from PIL import Image, ImageFilter, ImageOps
from PIL.ImageOps import exif_transpose
from tqdm import tqdm

from torchvision import transforms

# supress all warnings
import warnings

warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)


def flush(garbage_collect=True):
    torch.cuda.empty_cache()
    if garbage_collect:
        gc.collect()


ControlTypes = Literal['depth', 'pose', 'line', 'inpaint', 'mask']

img_ext_list = ['.jpg', '.jpeg', '.png', '.webp']


class ControlGenerator:
    def __init__(self, device, sd=None):
        self.device = device
        self.sd = sd  # optional. It will unload the model if not None
        self.has_unloaded = False
        self.control_depth_model = None
        self.control_pose_model = None
        self.control_line_model = None
        self.control_bg_remover = None
        self.debug = False
        self.regen = False

    def get_control_path(self, img_path, control_type: ControlTypes):
        if self.regen:
            return self._generate_control(img_path, control_type)
        coltrols_folder = os.path.join(os.path.dirname(img_path), '_controls')
        file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]
        file_name_no_ext_control = f"{file_name_no_ext}.{control_type}"
        for ext in img_ext_list:
            possible_path = os.path.join(
                coltrols_folder, file_name_no_ext_control + ext)
            if os.path.exists(possible_path):
                return possible_path
        # if we get here, we need to generate the control
        return self._generate_control(img_path, control_type)

    def debug_print(self, *args, **kwargs):
        if self.debug:
            print(*args, **kwargs)

    def _generate_control(self, img_path, control_type):
        device = self.device
        image: Image = None

        coltrols_folder = os.path.join(os.path.dirname(img_path), '_controls')
        file_name_no_ext = os.path.splitext(os.path.basename(img_path))[0]

        # we need to generate the control. Unload model if not unloaded
        if not self.has_unloaded:
            if self.sd is not None:
                print("Unloading model to generate controls")
                self.sd.set_device_state_preset('unload')
            self.has_unloaded = True

        if image is None:
            # make sure image is loaded if we havent loaded it with another control
            image = Image.open(img_path).convert('RGB')
            image = exif_transpose(image)

            # resize to a max of 1mp
            max_size = 1024 * 1024

            w, h = image.size
            if w * h > max_size:
                scale = math.sqrt(max_size / (w * h))
                w = int(w * scale)
                h = int(h * scale)
                image = image.resize((w, h), Image.BICUBIC)

        save_path = os.path.join(
            coltrols_folder, f"{file_name_no_ext}.{control_type}.jpg")
        os.makedirs(coltrols_folder, exist_ok=True)
        if control_type == 'depth':
            self.debug_print("Generating depth control")
            if self.control_depth_model is None:
                from transformers import pipeline
                self.control_depth_model = pipeline(
                    task="depth-estimation",
                    model="depth-anything/Depth-Anything-V2-Large-hf",
                    device=device,
                    torch_dtype=torch.float16
                )
            img = image.copy()
            in_size = img.size
            output = self.control_depth_model(img)
            out_tensor = output["predicted_depth"]  # shape (1, H, W) 0 - 255
            out_tensor = out_tensor.clamp(0, 255)
            out_tensor = out_tensor.squeeze(0).cpu().numpy()
            img = Image.fromarray(out_tensor.astype('uint8'))
            img = img.resize(in_size, Image.LANCZOS)
            img.save(save_path)
            return save_path
        elif control_type == 'pose':
            self.debug_print("Generating pose control")
            if self.control_pose_model is None:
                try:
                    import onnxruntime
                    onnxruntime.set_default_logger_severity(3)
                except ImportError:
                    raise ImportError(
                        "onnxruntime is not installed. Please install it with pip install onnxruntime or onnxruntime-gpu")
                try:
                    from easy_dwpose import DWposeDetector
                    self.control_pose_model = DWposeDetector(
                        device=str(device))
                except ImportError:
                    raise ImportError(
                        "easy-dwpose is not installed. Please install it with pip install easy-dwpose")
            img = image.copy()

            detect_res = int(math.sqrt(img.size[0] * img.size[1]))
            img = self.control_pose_model(
                img, output_type="pil", include_hands=True, include_face=True, detect_resolution=detect_res)
            img = img.convert('RGB')
            img.save(save_path)
            return save_path

        elif control_type == 'line':
            self.debug_print("Generating line control")
            if self.control_line_model is None:
                from controlnet_aux import TEEDdetector
                self.control_line_model = TEEDdetector.from_pretrained(
                    "fal-ai/teed", filename="5_model.pth").to(device)
            img = image.copy()
            img = self.control_line_model(img, detect_resolution=1024)
            # apply threshold
            # img = img.filter(ImageFilter.GaussianBlur(radius=1))
            img = img.point(lambda p: p > 128 and 255)
            img = img.convert('RGB')
            img.save(save_path)
            return save_path
        elif control_type == 'inpaint' or control_type == 'mask':
            self.debug_print("Generating inpaint/mask control")
            img = image.copy()
            if self.control_bg_remover is None:
                from transformers import AutoModelForImageSegmentation
                self.control_bg_remover = AutoModelForImageSegmentation.from_pretrained(
                    'ZhengPeng7/BiRefNet_HR',
                    trust_remote_code=True,
                    revision="595e212b3eaa6a1beaad56cee49749b1e00b1596",
                    torch_dtype=torch.float16
                ).to(device)
                self.control_bg_remover.eval()

            image_size = (1024, 1024)
            transform_image = transforms.Compose([
                transforms.Resize(image_size),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [
                                     0.229, 0.224, 0.225])
            ])

            input_images = transform_image(img).unsqueeze(
                0).to('cuda').to(torch.float16)

            # Prediction
            preds = self.control_bg_remover(input_images)[-1].sigmoid().cpu()
            pred = preds[0].squeeze()
            pred_pil = transforms.ToPILImage()(pred)
            mask = pred_pil.resize(img.size)
            if control_type == 'inpaint':
                # inpainting feature currently only supports "erased" section desired to inpaint
                mask = ImageOps.invert(mask)
                img.putalpha(mask)
                save_path = os.path.join(
                    coltrols_folder, f"{file_name_no_ext}.{control_type}.webp")
            else:
                img = mask
                img = img.convert('RGB')
            img.save(save_path)
            return save_path
        else:
            raise Exception(f"Error: unknown control type {control_type}")

    def cleanup(self):
        if self.control_depth_model is not None:
            self.control_depth_model = None
        if self.control_pose_model is not None:
            self.control_pose_model = None
        if self.control_line_model is not None:
            self.control_line_model = None
        if self.control_bg_remover is not None:
            self.control_bg_remover = None
        if self.sd is not None and self.has_unloaded:
            self.sd.restore_device_state()
        self.has_unloaded = False

        flush()


if __name__ == "__main__":
    import sys
    import argparse
    import time
    import transformers
    transformers.logging.set_verbosity_error()

    control_times = {
        'depth': 0,
        'pose': 0,
        'line': 0,
        'inpaint': 0,
        'mask': 0
    }

    controls = control_times.keys()

    parser = argparse.ArgumentParser(description="Generate control images")
    parser.add_argument("img_dir", type=str, help="Path to image directory")
    parser.add_argument('--debug', action='store_true',
                        help="Enable debug mode")
    parser.add_argument('--regen', action='store_true',
                        help="Regenerate all controls")

    args = parser.parse_args()
    img_dir = args.img_dir
    if not os.path.exists(img_dir):
        print(f"Error: {img_dir} does not exist")
        exit()
    if not os.path.isdir(img_dir):
        print(f"Error: {img_dir} is not a directory")
        exit()

    # find images
    img_list = []
    for root, dirs, files in os.walk(img_dir):
        for file in files:
            if "_controls" in root:
                continue
            if file.startswith('.'):
                continue
            if file.lower().endswith(tuple(img_ext_list)):
                img_list.append(os.path.join(root, file))
    if len(img_list) == 0:
        print(f"Error: no images found in {img_dir}")
        exit()

    # load model
    idx = 0
    for img_path in tqdm(img_list):
        for control in controls:
            start = time.time()
            control_gen = ControlGenerator(torch.device('cuda'))
            control_gen.debug = args.debug
            control_gen.regen = args.regen
            control_path = control_gen.get_control_path(img_path, control)
            end = time.time()
            # dont track for first 2 images
            if idx < 2:
                continue
            control_times[control] += end - start
        idx += 1

    # determine avgt time
    for control in controls:
        control_times[control] /= (idx - 2)
        print(
            f"Avg time for {control} control: {control_times[control]:.2f} seconds")

    print("Done")