import os import re from typing import Optional import torch from safetensors.torch import load_file from tqdm import tqdm import logging from utils.safetensors_utils import MemoryEfficientSafeOpen logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) from modules.fp8_optimization_utils import optimize_state_dict_with_fp8_on_the_fly def merge_lora_to_state_dict( model_file: str, lora_files: Optional[list[str]], multipliers: Optional[list[float]], fp8_optimization: bool, device: torch.device, move_to_device: bool = False, ) -> dict[str, torch.Tensor]: """ Merge LoRA weights into the state dict of a model. """ # if the file name ends with 00001-of-00004 etc, we need to load the files with the same prefix basename = os.path.basename(model_file) match = re.match(r"^(.*?)(\d+)-of-(\d+)\.safetensors$", basename) if match: prefix = basename[: match.start(2)] count = int(match.group(3)) model_files = [os.path.normpath(model_file)] for i in range(count): file_name = f"{prefix}{i+1:05d}-of-{count:05d}.safetensors" file_path = os.path.join(os.path.dirname(model_file), file_name) file_path = os.path.normpath(file_path) if os.path.exists(file_path) and file_path not in model_files: model_files.append(file_path) logger.info(f"Loading split weights: {model_files}") else: model_files = [os.path.normpath(model_file)] list_of_lora_sd = [] if lora_files is not None: for lora_file in lora_files: # Load LoRA safetensors file lora_sd = load_file(lora_file) # Check the format of the LoRA file keys = list(lora_sd.keys()) if keys[0].startswith("lora_unet_"): logging.info(f"Musubi Tuner LoRA detected") else: transformer_prefixes = ["diffusion_model", "transformer"] # to ignore Text Encoder modules lora_suffix = None prefix = None for key in keys: if lora_suffix is None and "lora_A" in key: lora_suffix = "lora_A" if prefix is None: pfx = key.split(".")[0] if pfx in transformer_prefixes: prefix = pfx if lora_suffix is not None and prefix is not None: break if lora_suffix == "lora_A" and prefix is not None: logging.info(f"Diffusion-pipe (?) LoRA detected") lora_sd = convert_from_diffusion_pipe_or_something(lora_sd, "lora_unet_") else: logging.info(f"LoRA file format not recognized: {os.path.basename(lora_file)}") lora_sd = None if lora_sd is not None: # Check LoRA is for FramePack or for HunyuanVideo is_hunyuan = False for key in lora_sd.keys(): if "double_blocks" in key or "single_blocks" in key: is_hunyuan = True break if is_hunyuan: logging.info("HunyuanVideo LoRA detected, converting to FramePack format") lora_sd = convert_hunyuan_to_framepack(lora_sd) if lora_sd is not None: list_of_lora_sd.append(lora_sd) if len(list_of_lora_sd) == 0: # no LoRA files found, just load the model return load_safetensors_with_fp8_optimization(model_files, fp8_optimization, device, move_to_device, weight_hook=None) return load_safetensors_with_lora_and_fp8(model_files, list_of_lora_sd, multipliers, fp8_optimization, device, move_to_device) def convert_from_diffusion_pipe_or_something(lora_sd: dict[str, torch.Tensor], prefix: str) -> dict[str, torch.Tensor]: """ Convert LoRA weights to the format used by the diffusion pipeline to Musubi Tuner. Copy from Musubi Tuner repo. """ # convert from diffusers(?) to default LoRA # Diffusers format: {"diffusion_model.module.name.lora_A.weight": weight, "diffusion_model.module.name.lora_B.weight": weight, ...} # default LoRA format: {"prefix_module_name.lora_down.weight": weight, "prefix_module_name.lora_up.weight": weight, ...} # note: Diffusers has no alpha, so alpha is set to rank new_weights_sd = {} lora_dims = {} for key, weight in lora_sd.items(): diffusers_prefix, key_body = key.split(".", 1) if diffusers_prefix != "diffusion_model" and diffusers_prefix != "transformer": print(f"unexpected key: {key} in diffusers format") continue new_key = f"{prefix}{key_body}".replace(".", "_").replace("_lora_A_", ".lora_down.").replace("_lora_B_", ".lora_up.") new_weights_sd[new_key] = weight lora_name = new_key.split(".")[0] # before first dot if lora_name not in lora_dims and "lora_down" in new_key: lora_dims[lora_name] = weight.shape[0] # add alpha with rank for lora_name, dim in lora_dims.items(): new_weights_sd[f"{lora_name}.alpha"] = torch.tensor(dim) return new_weights_sd def load_safetensors_with_lora_and_fp8( model_files: list[str], list_of_lora_sd: list[dict[str, torch.Tensor]], multipliers: Optional[list[float]], fp8_optimization: bool, device: torch.device, move_to_device: bool = False, ) -> dict[str, torch.Tensor]: """ Merge LoRA weights into the state dict of a model with fp8 optimization if needed. """ if multipliers is None: multipliers = [1.0] * len(list_of_lora_sd) if len(multipliers) > len(list_of_lora_sd): multipliers = multipliers[: len(list_of_lora_sd)] if len(multipliers) < len(list_of_lora_sd): multipliers += [1.0] * (len(list_of_lora_sd) - len(multipliers)) multipliers = [float(m) for m in multipliers] list_of_lora_weight_keys = [] for lora_sd in list_of_lora_sd: lora_weight_keys = set(lora_sd.keys()) list_of_lora_weight_keys.append(lora_weight_keys) # Merge LoRA weights into the state dict print(f"Merging LoRA weights into state dict on the fly. multipliers: {multipliers}") # make hook for LoRA merging def weight_hook(model_weight_key, model_weight): nonlocal list_of_lora_weight_keys, list_of_lora_sd, multipliers if not model_weight_key.endswith(".weight"): return model_weight original_device = model_weight.device if original_device != device: model_weight = model_weight.to(device) # to make calculation faster for lora_weight_keys, lora_sd, multiplier in zip(list_of_lora_weight_keys, list_of_lora_sd, multipliers): # check if this weight has LoRA weights lora_name = model_weight_key.rsplit(".", 1)[0] # remove trailing ".weight" lora_name = "lora_unet_" + lora_name.replace(".", "_") down_key = lora_name + ".lora_down.weight" up_key = lora_name + ".lora_up.weight" alpha_key = lora_name + ".alpha" if down_key not in lora_weight_keys or up_key not in lora_weight_keys: return model_weight # get LoRA weights down_weight = lora_sd[down_key] up_weight = lora_sd[up_key] dim = down_weight.size()[0] alpha = lora_sd.get(alpha_key, dim) scale = alpha / dim down_weight = down_weight.to(device) up_weight = up_weight.to(device) # W <- W + U * D if len(model_weight.size()) == 2: # linear if len(up_weight.size()) == 4: # use linear projection mismatch up_weight = up_weight.squeeze(3).squeeze(2) down_weight = down_weight.squeeze(3).squeeze(2) model_weight = model_weight + multiplier * (up_weight @ down_weight) * scale elif down_weight.size()[2:4] == (1, 1): # conv2d 1x1 model_weight = ( model_weight + multiplier * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale ) else: # conv2d 3x3 conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) # logger.info(conved.size(), weight.size(), module.stride, module.padding) model_weight = model_weight + multiplier * conved * scale # remove LoRA keys from set lora_weight_keys.remove(down_key) lora_weight_keys.remove(up_key) if alpha_key in lora_weight_keys: lora_weight_keys.remove(alpha_key) model_weight = model_weight.to(original_device) # move back to original device return model_weight state_dict = load_safetensors_with_fp8_optimization( model_files, fp8_optimization, device, move_to_device, weight_hook=weight_hook ) for lora_weight_keys in list_of_lora_weight_keys: if len(lora_weight_keys) > 0: # if there are still LoRA keys left, it means they are not used in the model # this is a warning, not an error logger.warning(f"Warning: {len(lora_weight_keys)} LoRA keys not used in the model: {lora_weight_keys}") return state_dict def convert_hunyuan_to_framepack(lora_sd: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """ Convert HunyuanVideo LoRA weights to FramePack format. """ new_lora_sd = {} for key, weight in lora_sd.items(): if "double_blocks" in key: key = key.replace("double_blocks", "transformer_blocks") key = key.replace("img_mod_linear", "norm1_linear") key = key.replace("img_attn_qkv", "attn_to_QKV") # split later key = key.replace("img_attn_proj", "attn_to_out_0") key = key.replace("img_mlp_fc1", "ff_net_0_proj") key = key.replace("img_mlp_fc2", "ff_net_2") key = key.replace("txt_mod_linear", "norm1_context_linear") key = key.replace("txt_attn_qkv", "attn_add_QKV_proj") # split later key = key.replace("txt_attn_proj", "attn_to_add_out") key = key.replace("txt_mlp_fc1", "ff_context_net_0_proj") key = key.replace("txt_mlp_fc2", "ff_context_net_2") elif "single_blocks" in key: key = key.replace("single_blocks", "single_transformer_blocks") key = key.replace("linear1", "attn_to_QKVM") # split later key = key.replace("linear2", "proj_out") key = key.replace("modulation_linear", "norm_linear") else: print(f"Unsupported module name: {key}, only double_blocks and single_blocks are supported") continue if "QKVM" in key: # split QKVM into Q, K, V, M key_q = key.replace("QKVM", "q") key_k = key.replace("QKVM", "k") key_v = key.replace("QKVM", "v") key_m = key.replace("attn_to_QKVM", "proj_mlp") if "_down" in key or "alpha" in key: # copy QKVM weight or alpha to Q, K, V, M assert "alpha" in key or weight.size(1) == 3072, f"QKVM weight size mismatch: {key}. {weight.size()}" new_lora_sd[key_q] = weight new_lora_sd[key_k] = weight new_lora_sd[key_v] = weight new_lora_sd[key_m] = weight elif "_up" in key: # split QKVM weight into Q, K, V, M assert weight.size(0) == 21504, f"QKVM weight size mismatch: {key}. {weight.size()}" new_lora_sd[key_q] = weight[:3072] new_lora_sd[key_k] = weight[3072 : 3072 * 2] new_lora_sd[key_v] = weight[3072 * 2 : 3072 * 3] new_lora_sd[key_m] = weight[3072 * 3 :] # 21504 - 3072 * 3 = 12288 else: print(f"Unsupported module name: {key}") continue elif "QKV" in key: # split QKV into Q, K, V key_q = key.replace("QKV", "q") key_k = key.replace("QKV", "k") key_v = key.replace("QKV", "v") if "_down" in key or "alpha" in key: # copy QKV weight or alpha to Q, K, V assert "alpha" in key or weight.size(1) == 3072, f"QKV weight size mismatch: {key}. {weight.size()}" new_lora_sd[key_q] = weight new_lora_sd[key_k] = weight new_lora_sd[key_v] = weight elif "_up" in key: # split QKV weight into Q, K, V assert weight.size(0) == 3072 * 3, f"QKV weight size mismatch: {key}. {weight.size()}" new_lora_sd[key_q] = weight[:3072] new_lora_sd[key_k] = weight[3072 : 3072 * 2] new_lora_sd[key_v] = weight[3072 * 2 :] else: print(f"Unsupported module name: {key}") continue else: # no split needed new_lora_sd[key] = weight return new_lora_sd def load_safetensors_with_fp8_optimization( model_files: list[str], fp8_optimization: bool, device: torch.device, move_to_device: bool, weight_hook: callable = None ) -> dict[str, torch.Tensor]: """ Load state dict from safetensors files and merge LoRA weights into the state dict with fp8 optimization if needed. """ if fp8_optimization: TARGET_KEYS = ["transformer_blocks", "single_transformer_blocks"] EXCLUDE_KEYS = ["norm"] # Exclude norm layers (e.g., LayerNorm, RMSNorm) from FP8 state_dict = optimize_state_dict_with_fp8_on_the_fly( model_files, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device, weight_hook=weight_hook ) else: state_dict = {} for model_file in model_files: with MemoryEfficientSafeOpen(model_file) as f: for key in tqdm(f.keys(), desc=f"Loading {model_file}", leave=False): value = f.get_tensor(key) if weight_hook is not None: value = weight_hook(key, value) if move_to_device: value = value.to(device) state_dict[key] = value return state_dict