#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Face restoration for Blissful Tuner Extension License: Apache 2.0 Created on Wed Apr 23 10:19:19 2025 @author: blyss """ from rich.traceback import install as install_rich_tracebacks from tqdm import tqdm from gfpgan import GFPGANer import torch from torchvision.transforms.functional import normalize from facexlib.utils.face_restoration_helper import FaceRestoreHelper from codeformer.basicsr.utils.registry import ARCH_REGISTRY from basicsr.utils import img2tensor, tensor2img from video_processing_common import BlissfulVideoProcessor, setup_parser_video_common, set_seed from utils import BlissfulLogger logger = BlissfulLogger(__name__, "#8e00ed") install_rich_tracebacks() def main(): parser = setup_parser_video_common(description="Restore faces with GFPGAN or CODEFORMER") parser.add_argument("--only_center", action="store_true", help="Only process center face") parser.add_argument("--weight", type=float, default=0.5, help="Strength of GFPGAN or CodeFormer power") parser.add_argument('-s', '--upscale', type=float, default=1, help='The final upsampling scale of the image. Default: 1') parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', help='Face detector. Default: retinaface_resnet50') parser.add_argument("--mode", type=str, default="gfpgan", help="Mode - either gfpgan or codeformer") device = "cuda" if torch.cuda.is_available() else "cpu" args = parser.parse_args() logger.info("Loading input...") VideoProcessor = BlissfulVideoProcessor(device, torch.float32) VideoProcessor.prepare_files_and_path(args.input, args.output, args.mode.upper()) frames, fps, _, _ = VideoProcessor.load_frames() set_seed(args.seed) if args.mode.lower() == "gfpgan": restorer = GFPGANer( model_path=args.model, upscale=args.upscale, arch='clean', channel_multiplier=2, bg_upsampler=None) # ------------------------ restore ------------------------ for frame in tqdm(frames): # restore faces and background if necessary _, _, restored_frame = restorer.enhance( frame, has_aligned=False, only_center_face=args.only_center, paste_back=True, weight=args.weight) VideoProcessor.write_np_or_tensor_to_png(restored_frame) del restored_frame elif args.mode.lower() == "codeformer": net = ARCH_REGISTRY.get('CodeFormer')( dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device) checkpoint = torch.load(args.model)['params_ema'] net.load_state_dict(checkpoint) net.eval() face_helper = FaceRestoreHelper( args.upscale, face_size=512, crop_ratio=(1, 1), det_model=args.detection_model, save_ext='png', use_parse=True, device=device) for frame in tqdm(frames): # clean all the intermediate results to process the next image face_helper.clean_all() face_helper.read_image(frame) # get face landmarks for each face _ = face_helper.get_face_landmarks_5( only_center_face=args.only_center, resize=640, eye_dist_threshold=5) # align and warp each face face_helper.align_warp_face() # face restoration for each cropped face for cropped_face in face_helper.cropped_faces: # prepare data cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) try: with torch.no_grad(): output = net(cropped_face_t, w=args.weight, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output torch.cuda.empty_cache() except Exception as error: logger.info(f'\tFailed inference for CodeFormer: {error}') restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face) face_helper.get_inverse_affine(None) restored_img = face_helper.paste_faces_to_input_image() VideoProcessor.write_np_or_tensor_to_png(restored_img) del restored_img VideoProcessor.write_buffered_frames_to_output(fps, args.keep_pngs) if __name__ == '__main__': main()