Spaces:
Running
Running
# LoRA network module: currently conv2d is not fully supported | |
# reference: | |
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py | |
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py | |
import ast | |
import math | |
import os | |
import re | |
from typing import Dict, List, Optional, Type, Union | |
from transformers import CLIPTextModel | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import logging | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO) | |
HUNYUAN_TARGET_REPLACE_MODULES = ["MMDoubleStreamBlock", "MMSingleStreamBlock"] | |
class LoRAModule(torch.nn.Module): | |
""" | |
replaces forward method of the original Linear, instead of replacing the original Linear module. | |
""" | |
def __init__( | |
self, | |
lora_name, | |
org_module: torch.nn.Module, | |
multiplier=1.0, | |
lora_dim=4, | |
alpha=1, | |
dropout=None, | |
rank_dropout=None, | |
module_dropout=None, | |
split_dims: Optional[List[int]] = None, | |
): | |
""" | |
if alpha == 0 or None, alpha is rank (no scaling). | |
split_dims is used to mimic the split qkv of multi-head attention. | |
""" | |
super().__init__() | |
self.lora_name = lora_name | |
if org_module.__class__.__name__ == "Conv2d": | |
in_dim = org_module.in_channels | |
out_dim = org_module.out_channels | |
else: | |
in_dim = org_module.in_features | |
out_dim = org_module.out_features | |
self.lora_dim = lora_dim | |
self.split_dims = split_dims | |
if split_dims is None: | |
if org_module.__class__.__name__ == "Conv2d": | |
kernel_size = org_module.kernel_size | |
stride = org_module.stride | |
padding = org_module.padding | |
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) | |
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) | |
else: | |
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) | |
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False) | |
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) | |
torch.nn.init.zeros_(self.lora_up.weight) | |
else: | |
# conv2d not supported | |
assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim" | |
assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear" | |
# print(f"split_dims: {split_dims}") | |
self.lora_down = torch.nn.ModuleList( | |
[torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))] | |
) | |
self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims]) | |
for lora_down in self.lora_down: | |
torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5)) | |
for lora_up in self.lora_up: | |
torch.nn.init.zeros_(lora_up.weight) | |
if type(alpha) == torch.Tensor: | |
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error | |
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha | |
self.scale = alpha / self.lora_dim | |
self.register_buffer("alpha", torch.tensor(alpha)) # for save/load | |
# same as microsoft's | |
self.multiplier = multiplier | |
self.org_module = org_module # remove in applying | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
def apply_to(self): | |
self.org_forward = self.org_module.forward | |
self.org_module.forward = self.forward | |
del self.org_module | |
def forward(self, x): | |
org_forwarded = self.org_forward(x) | |
# module dropout | |
if self.module_dropout is not None and self.training: | |
if torch.rand(1) < self.module_dropout: | |
return org_forwarded | |
if self.split_dims is None: | |
lx = self.lora_down(x) | |
# normal dropout | |
if self.dropout is not None and self.training: | |
lx = torch.nn.functional.dropout(lx, p=self.dropout) | |
# rank dropout | |
if self.rank_dropout is not None and self.training: | |
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout | |
if len(lx.size()) == 3: | |
mask = mask.unsqueeze(1) # for Text Encoder | |
elif len(lx.size()) == 4: | |
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d | |
lx = lx * mask | |
# scaling for rank dropout: treat as if the rank is changed | |
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability | |
else: | |
scale = self.scale | |
lx = self.lora_up(lx) | |
return org_forwarded + lx * self.multiplier * scale | |
else: | |
lxs = [lora_down(x) for lora_down in self.lora_down] | |
# normal dropout | |
if self.dropout is not None and self.training: | |
lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs] | |
# rank dropout | |
if self.rank_dropout is not None and self.training: | |
masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs] | |
for i in range(len(lxs)): | |
if len(lx.size()) == 3: | |
masks[i] = masks[i].unsqueeze(1) | |
elif len(lx.size()) == 4: | |
masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1) | |
lxs[i] = lxs[i] * masks[i] | |
# scaling for rank dropout: treat as if the rank is changed | |
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability | |
else: | |
scale = self.scale | |
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] | |
return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale | |
class LoRAInfModule(LoRAModule): | |
def __init__( | |
self, | |
lora_name, | |
org_module: torch.nn.Module, | |
multiplier=1.0, | |
lora_dim=4, | |
alpha=1, | |
**kwargs, | |
): | |
# no dropout for inference | |
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha) | |
self.org_module_ref = [org_module] # for reference | |
self.enabled = True | |
self.network: LoRANetwork = None | |
def set_network(self, network): | |
self.network = network | |
# merge weight to org_module | |
# def merge_to(self, sd, dtype, device, non_blocking=False): | |
# if torch.cuda.is_available(): | |
# stream = torch.cuda.Stream(device=device) | |
# with torch.cuda.stream(stream): | |
# print(f"merge_to {self.lora_name}") | |
# self._merge_to(sd, dtype, device, non_blocking) | |
# torch.cuda.synchronize(device=device) | |
# print(f"merge_to {self.lora_name} done") | |
# torch.cuda.empty_cache() | |
# else: | |
# self._merge_to(sd, dtype, device, non_blocking) | |
def merge_to(self, sd, dtype, device, non_blocking=False): | |
# extract weight from org_module | |
org_sd = self.org_module.state_dict() | |
weight = org_sd["weight"] | |
org_dtype = weight.dtype | |
org_device = weight.device | |
weight = weight.to(device, dtype=torch.float, non_blocking=non_blocking) # for calculation | |
if dtype is None: | |
dtype = org_dtype | |
if device is None: | |
device = org_device | |
if self.split_dims is None: | |
# get up/down weight | |
down_weight = sd["lora_down.weight"].to(device, dtype=torch.float, non_blocking=non_blocking) | |
up_weight = sd["lora_up.weight"].to(device, dtype=torch.float, non_blocking=non_blocking) | |
# merge weight | |
if len(weight.size()) == 2: | |
# linear | |
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale | |
elif down_weight.size()[2:4] == (1, 1): | |
# conv2d 1x1 | |
weight = ( | |
weight | |
+ self.multiplier | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* self.scale | |
) | |
else: | |
# conv2d 3x3 | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
# logger.info(conved.size(), weight.size(), module.stride, module.padding) | |
weight = weight + self.multiplier * conved * self.scale | |
# set weight to org_module | |
org_sd["weight"] = weight.to(org_device, dtype=dtype) # back to CPU without non_blocking | |
self.org_module.load_state_dict(org_sd) | |
else: | |
# split_dims | |
total_dims = sum(self.split_dims) | |
for i in range(len(self.split_dims)): | |
# get up/down weight | |
down_weight = sd[f"lora_down.{i}.weight"].to(device, torch.float, non_blocking=non_blocking) # (rank, in_dim) | |
up_weight = sd[f"lora_up.{i}.weight"].to(device, torch.float, non_blocking=non_blocking) # (split dim, rank) | |
# pad up_weight -> (total_dims, rank) | |
padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float) | |
padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight | |
# merge weight | |
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale | |
# set weight to org_module | |
org_sd["weight"] = weight.to(org_device, dtype) # back to CPU without non_blocking | |
self.org_module.load_state_dict(org_sd) | |
# return weight for merge | |
def get_weight(self, multiplier=None): | |
if multiplier is None: | |
multiplier = self.multiplier | |
# get up/down weight from module | |
up_weight = self.lora_up.weight.to(torch.float) | |
down_weight = self.lora_down.weight.to(torch.float) | |
# pre-calculated weight | |
if len(down_weight.size()) == 2: | |
# linear | |
weight = self.multiplier * (up_weight @ down_weight) * self.scale | |
elif down_weight.size()[2:4] == (1, 1): | |
# conv2d 1x1 | |
weight = ( | |
self.multiplier | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* self.scale | |
) | |
else: | |
# conv2d 3x3 | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
weight = self.multiplier * conved * self.scale | |
return weight | |
def default_forward(self, x): | |
# logger.info(f"default_forward {self.lora_name} {x.size()}") | |
if self.split_dims is None: | |
lx = self.lora_down(x) | |
lx = self.lora_up(lx) | |
return self.org_forward(x) + lx * self.multiplier * self.scale | |
else: | |
lxs = [lora_down(x) for lora_down in self.lora_down] | |
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] | |
return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale | |
def forward(self, x): | |
if not self.enabled: | |
return self.org_forward(x) | |
return self.default_forward(x) | |
def create_arch_network( | |
multiplier: float, | |
network_dim: Optional[int], | |
network_alpha: Optional[float], | |
vae: nn.Module, | |
text_encoders: List[nn.Module], | |
unet: nn.Module, | |
neuron_dropout: Optional[float] = None, | |
**kwargs, | |
): | |
# add default exclude patterns | |
exclude_patterns = kwargs.get("exclude_patterns", None) | |
if exclude_patterns is None: | |
exclude_patterns = [] | |
else: | |
exclude_patterns = ast.literal_eval(exclude_patterns) | |
# exclude if 'img_mod', 'txt_mod' or 'modulation' in the name | |
exclude_patterns.append(r".*(img_mod|txt_mod|modulation).*") | |
kwargs["exclude_patterns"] = exclude_patterns | |
return create_network( | |
HUNYUAN_TARGET_REPLACE_MODULES, | |
"lora_unet", | |
multiplier, | |
network_dim, | |
network_alpha, | |
vae, | |
text_encoders, | |
unet, | |
neuron_dropout=neuron_dropout, | |
**kwargs, | |
) | |
def create_network( | |
target_replace_modules: List[str], | |
prefix: str, | |
multiplier: float, | |
network_dim: Optional[int], | |
network_alpha: Optional[float], | |
vae: nn.Module, | |
text_encoders: List[nn.Module], | |
unet: nn.Module, | |
neuron_dropout: Optional[float] = None, | |
**kwargs, | |
): | |
""" architecture independent network creation """ | |
if network_dim is None: | |
network_dim = 4 # default | |
if network_alpha is None: | |
network_alpha = 1.0 | |
# extract dim/alpha for conv2d, and block dim | |
conv_dim = kwargs.get("conv_dim", None) | |
conv_alpha = kwargs.get("conv_alpha", None) | |
if conv_dim is not None: | |
conv_dim = int(conv_dim) | |
if conv_alpha is None: | |
conv_alpha = 1.0 | |
else: | |
conv_alpha = float(conv_alpha) | |
# TODO generic rank/dim setting with regular expression | |
# rank/module dropout | |
rank_dropout = kwargs.get("rank_dropout", None) | |
if rank_dropout is not None: | |
rank_dropout = float(rank_dropout) | |
module_dropout = kwargs.get("module_dropout", None) | |
if module_dropout is not None: | |
module_dropout = float(module_dropout) | |
# verbose | |
verbose = kwargs.get("verbose", False) | |
if verbose is not None: | |
verbose = True if verbose == "True" else False | |
# regular expression for module selection: exclude and include | |
exclude_patterns = kwargs.get("exclude_patterns", None) | |
if exclude_patterns is not None and isinstance(exclude_patterns, str): | |
exclude_patterns = ast.literal_eval(exclude_patterns) | |
include_patterns = kwargs.get("include_patterns", None) | |
if include_patterns is not None and isinstance(include_patterns, str): | |
include_patterns = ast.literal_eval(include_patterns) | |
# too many arguments ( ^ω^)・・・ | |
network = LoRANetwork( | |
target_replace_modules, | |
prefix, | |
text_encoders, | |
unet, | |
multiplier=multiplier, | |
lora_dim=network_dim, | |
alpha=network_alpha, | |
dropout=neuron_dropout, | |
rank_dropout=rank_dropout, | |
module_dropout=module_dropout, | |
conv_lora_dim=conv_dim, | |
conv_alpha=conv_alpha, | |
exclude_patterns=exclude_patterns, | |
include_patterns=include_patterns, | |
verbose=verbose, | |
) | |
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) | |
# loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None) | |
# loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None) | |
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None | |
# loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None | |
# loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None | |
if loraplus_lr_ratio is not None: # or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None: | |
network.set_loraplus_lr_ratio(loraplus_lr_ratio) # , loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio) | |
return network | |
class LoRANetwork(torch.nn.Module): | |
# only supports U-Net (DiT), Text Encoders are not supported | |
def __init__( | |
self, | |
target_replace_modules: List[str], | |
prefix: str, | |
text_encoders: Union[List[CLIPTextModel], CLIPTextModel], | |
unet: nn.Module, | |
multiplier: float = 1.0, | |
lora_dim: int = 4, | |
alpha: float = 1, | |
dropout: Optional[float] = None, | |
rank_dropout: Optional[float] = None, | |
module_dropout: Optional[float] = None, | |
conv_lora_dim: Optional[int] = None, | |
conv_alpha: Optional[float] = None, | |
module_class: Type[object] = LoRAModule, | |
modules_dim: Optional[Dict[str, int]] = None, | |
modules_alpha: Optional[Dict[str, int]] = None, | |
exclude_patterns: Optional[List[str]] = None, | |
include_patterns: Optional[List[str]] = None, | |
verbose: Optional[bool] = False, | |
) -> None: | |
super().__init__() | |
self.multiplier = multiplier | |
self.lora_dim = lora_dim | |
self.alpha = alpha | |
self.conv_lora_dim = conv_lora_dim | |
self.conv_alpha = conv_alpha | |
self.dropout = dropout | |
self.rank_dropout = rank_dropout | |
self.module_dropout = module_dropout | |
self.target_replace_modules = target_replace_modules | |
self.prefix = prefix | |
self.loraplus_lr_ratio = None | |
# self.loraplus_unet_lr_ratio = None | |
# self.loraplus_text_encoder_lr_ratio = None | |
if modules_dim is not None: | |
logger.info(f"create LoRA network from weights") | |
else: | |
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") | |
logger.info( | |
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}" | |
) | |
# if self.conv_lora_dim is not None: | |
# logger.info( | |
# f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}" | |
# ) | |
# if train_t5xxl: | |
# logger.info(f"train T5XXL as well") | |
# compile regular expression if specified | |
exclude_re_patterns = [] | |
if exclude_patterns is not None: | |
for pattern in exclude_patterns: | |
try: | |
re_pattern = re.compile(pattern) | |
except re.error as e: | |
logger.error(f"Invalid exclude pattern '{pattern}': {e}") | |
continue | |
exclude_re_patterns.append(re_pattern) | |
include_re_patterns = [] | |
if include_patterns is not None: | |
for pattern in include_patterns: | |
try: | |
re_pattern = re.compile(pattern) | |
except re.error as e: | |
logger.error(f"Invalid include pattern '{pattern}': {e}") | |
continue | |
include_re_patterns.append(re_pattern) | |
# create module instances | |
def create_modules( | |
is_unet: bool, | |
pfx: str, | |
root_module: torch.nn.Module, | |
target_replace_mods: Optional[List[str]] = None, | |
filter: Optional[str] = None, | |
default_dim: Optional[int] = None, | |
) -> List[LoRAModule]: | |
loras = [] | |
skipped = [] | |
for name, module in root_module.named_modules(): | |
if target_replace_mods is None or module.__class__.__name__ in target_replace_mods: | |
if target_replace_mods is None: # dirty hack for all modules | |
module = root_module # search all modules | |
for child_name, child_module in module.named_modules(): | |
is_linear = child_module.__class__.__name__ == "Linear" | |
is_conv2d = child_module.__class__.__name__ == "Conv2d" | |
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) | |
if is_linear or is_conv2d: | |
original_name = (name + "." if name else "") + child_name | |
lora_name = f"{pfx}.{original_name}".replace(".", "_") | |
# exclude/include filter | |
excluded = False | |
for pattern in exclude_re_patterns: | |
if pattern.match(original_name): | |
excluded = True | |
break | |
included = False | |
for pattern in include_re_patterns: | |
if pattern.match(original_name): | |
included = True | |
break | |
if excluded and not included: | |
if verbose: | |
logger.info(f"exclude: {original_name}") | |
continue | |
# filter by name (not used in the current implementation) | |
if filter is not None and not filter in lora_name: | |
continue | |
dim = None | |
alpha = None | |
if modules_dim is not None: | |
# モジュール指定あり | |
if lora_name in modules_dim: | |
dim = modules_dim[lora_name] | |
alpha = modules_alpha[lora_name] | |
else: | |
# 通常、すべて対象とする | |
if is_linear or is_conv2d_1x1: | |
dim = default_dim if default_dim is not None else self.lora_dim | |
alpha = self.alpha | |
elif self.conv_lora_dim is not None: | |
dim = self.conv_lora_dim | |
alpha = self.conv_alpha | |
if dim is None or dim == 0: | |
# skipした情報を出力 | |
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None): | |
skipped.append(lora_name) | |
continue | |
lora = module_class( | |
lora_name, | |
child_module, | |
self.multiplier, | |
dim, | |
alpha, | |
dropout=dropout, | |
rank_dropout=rank_dropout, | |
module_dropout=module_dropout, | |
) | |
loras.append(lora) | |
if target_replace_mods is None: | |
break # all modules are searched | |
return loras, skipped | |
# # create LoRA for text encoder | |
# # it is redundant to create LoRA modules even if they are not used | |
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = [] | |
# skipped_te = [] | |
# for i, text_encoder in enumerate(text_encoders): | |
# index = i | |
# if not train_t5xxl and index > 0: # 0: CLIP, 1: T5XXL, so we skip T5XXL if train_t5xxl is False | |
# break | |
# logger.info(f"create LoRA for Text Encoder {index+1}:") | |
# text_encoder_loras, skipped = create_modules(False, index, text_encoder, LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) | |
# logger.info(f"create LoRA for Text Encoder {index+1}: {len(text_encoder_loras)} modules.") | |
# self.text_encoder_loras.extend(text_encoder_loras) | |
# skipped_te += skipped | |
# create LoRA for U-Net | |
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]] | |
self.unet_loras, skipped_un = create_modules(True, prefix, unet, target_replace_modules) | |
logger.info(f"create LoRA for U-Net/DiT: {len(self.unet_loras)} modules.") | |
if verbose: | |
for lora in self.unet_loras: | |
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}") | |
skipped = skipped_un | |
if verbose and len(skipped) > 0: | |
logger.warning( | |
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" | |
) | |
for name in skipped: | |
logger.info(f"\t{name}") | |
# assertion | |
names = set() | |
for lora in self.text_encoder_loras + self.unet_loras: | |
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" | |
names.add(lora.lora_name) | |
def prepare_network(self, args): | |
""" | |
called after the network is created | |
""" | |
pass | |
def set_multiplier(self, multiplier): | |
self.multiplier = multiplier | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.multiplier = self.multiplier | |
def set_enabled(self, is_enabled): | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.enabled = is_enabled | |
def load_weights(self, file): | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import load_file | |
weights_sd = load_file(file) | |
else: | |
weights_sd = torch.load(file, map_location="cpu") | |
info = self.load_state_dict(weights_sd, False) | |
return info | |
def apply_to( | |
self, | |
text_encoders: Optional[nn.Module], | |
unet: Optional[nn.Module], | |
apply_text_encoder: bool = True, | |
apply_unet: bool = True, | |
): | |
if apply_text_encoder: | |
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules") | |
else: | |
self.text_encoder_loras = [] | |
if apply_unet: | |
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules") | |
else: | |
self.unet_loras = [] | |
for lora in self.text_encoder_loras + self.unet_loras: | |
lora.apply_to() | |
self.add_module(lora.lora_name, lora) | |
# マージできるかどうかを返す | |
def is_mergeable(self): | |
return True | |
# TODO refactor to common function with apply_to | |
def merge_to(self, text_encoders, unet, weights_sd, dtype=None, device=None, non_blocking=False): | |
from concurrent.futures import ThreadPoolExecutor | |
with ThreadPoolExecutor(max_workers=2) as executor: # 2 workers is enough | |
futures = [] | |
for lora in self.text_encoder_loras + self.unet_loras: | |
sd_for_lora = {} | |
for key in weights_sd.keys(): | |
if key.startswith(lora.lora_name): | |
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] | |
if len(sd_for_lora) == 0: | |
logger.info(f"no weight for {lora.lora_name}") | |
continue | |
# lora.merge_to(sd_for_lora, dtype, device) | |
futures.append(executor.submit(lora.merge_to, sd_for_lora, dtype, device, non_blocking)) | |
for future in futures: | |
future.result() | |
logger.info(f"weights are merged") | |
def set_loraplus_lr_ratio(self, loraplus_lr_ratio): # , loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio): | |
self.loraplus_lr_ratio = loraplus_lr_ratio | |
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_lr_ratio}") | |
# logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}") | |
def prepare_optimizer_params(self, unet_lr: float = 1e-4, **kwargs): | |
self.requires_grad_(True) | |
all_params = [] | |
lr_descriptions = [] | |
def assemble_params(loras, lr, loraplus_ratio): | |
param_groups = {"lora": {}, "plus": {}} | |
for lora in loras: | |
for name, param in lora.named_parameters(): | |
if loraplus_ratio is not None and "lora_up" in name: | |
param_groups["plus"][f"{lora.lora_name}.{name}"] = param | |
else: | |
param_groups["lora"][f"{lora.lora_name}.{name}"] = param | |
params = [] | |
descriptions = [] | |
for key in param_groups.keys(): | |
param_data = {"params": param_groups[key].values()} | |
if len(param_data["params"]) == 0: | |
continue | |
if lr is not None: | |
if key == "plus": | |
param_data["lr"] = lr * loraplus_ratio | |
else: | |
param_data["lr"] = lr | |
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: | |
logger.info("NO LR skipping!") | |
continue | |
params.append(param_data) | |
descriptions.append("plus" if key == "plus" else "") | |
return params, descriptions | |
if self.unet_loras: | |
params, descriptions = assemble_params(self.unet_loras, unet_lr, self.loraplus_lr_ratio) | |
all_params.extend(params) | |
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions]) | |
return all_params, lr_descriptions | |
def enable_gradient_checkpointing(self): | |
# not supported | |
pass | |
def prepare_grad_etc(self, unet): | |
self.requires_grad_(True) | |
def on_epoch_start(self, unet): | |
self.train() | |
def on_step_start(self): | |
pass | |
def get_trainable_params(self): | |
return self.parameters() | |
def save_weights(self, file, dtype, metadata): | |
if metadata is not None and len(metadata) == 0: | |
metadata = None | |
state_dict = self.state_dict() | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
v = state_dict[key] | |
v = v.detach().clone().to("cpu").to(dtype) | |
state_dict[key] = v | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import save_file | |
from utils import model_utils | |
# Precalculate model hashes to save time on indexing | |
if metadata is None: | |
metadata = {} | |
model_hash, legacy_hash = model_utils.precalculate_safetensors_hashes(state_dict, metadata) | |
metadata["sshs_model_hash"] = model_hash | |
metadata["sshs_legacy_hash"] = legacy_hash | |
save_file(state_dict, file, metadata) | |
else: | |
torch.save(state_dict, file) | |
def backup_weights(self): | |
# 重みのバックアップを行う | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
if not hasattr(org_module, "_lora_org_weight"): | |
sd = org_module.state_dict() | |
org_module._lora_org_weight = sd["weight"].detach().clone() | |
org_module._lora_restored = True | |
def restore_weights(self): | |
# 重みのリストアを行う | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
if not org_module._lora_restored: | |
sd = org_module.state_dict() | |
sd["weight"] = org_module._lora_org_weight | |
org_module.load_state_dict(sd) | |
org_module._lora_restored = True | |
def pre_calculation(self): | |
# 事前計算を行う | |
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras | |
for lora in loras: | |
org_module = lora.org_module_ref[0] | |
sd = org_module.state_dict() | |
org_weight = sd["weight"] | |
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) | |
sd["weight"] = org_weight + lora_weight | |
assert sd["weight"].shape == org_weight.shape | |
org_module.load_state_dict(sd) | |
org_module._lora_restored = False | |
lora.enabled = False | |
def apply_max_norm_regularization(self, max_norm_value, device): | |
downkeys = [] | |
upkeys = [] | |
alphakeys = [] | |
norms = [] | |
keys_scaled = 0 | |
state_dict = self.state_dict() | |
for key in state_dict.keys(): | |
if "lora_down" in key and "weight" in key: | |
downkeys.append(key) | |
upkeys.append(key.replace("lora_down", "lora_up")) | |
alphakeys.append(key.replace("lora_down.weight", "alpha")) | |
for i in range(len(downkeys)): | |
down = state_dict[downkeys[i]].to(device) | |
up = state_dict[upkeys[i]].to(device) | |
alpha = state_dict[alphakeys[i]].to(device) | |
dim = down.shape[0] | |
scale = alpha / dim | |
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): | |
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): | |
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) | |
else: | |
updown = up @ down | |
updown *= scale | |
norm = updown.norm().clamp(min=max_norm_value / 2) | |
desired = torch.clamp(norm, max=max_norm_value) | |
ratio = desired.cpu() / norm.cpu() | |
sqrt_ratio = ratio**0.5 | |
if ratio != 1: | |
keys_scaled += 1 | |
state_dict[upkeys[i]] *= sqrt_ratio | |
state_dict[downkeys[i]] *= sqrt_ratio | |
scalednorm = updown.norm() * ratio | |
norms.append(scalednorm.item()) | |
return keys_scaled, sum(norms) / len(norms), max(norms) | |
def create_arch_network_from_weights( | |
multiplier: float, | |
weights_sd: Dict[str, torch.Tensor], | |
text_encoders: Optional[List[nn.Module]] = None, | |
unet: Optional[nn.Module] = None, | |
for_inference: bool = False, | |
**kwargs, | |
) -> LoRANetwork: | |
return create_network_from_weights( | |
HUNYUAN_TARGET_REPLACE_MODULES, multiplier, weights_sd, text_encoders, unet, for_inference, **kwargs | |
) | |
# Create network from weights for inference, weights are not loaded here (because can be merged) | |
def create_network_from_weights( | |
target_replace_modules: List[str], | |
multiplier: float, | |
weights_sd: Dict[str, torch.Tensor], | |
text_encoders: Optional[List[nn.Module]] = None, | |
unet: Optional[nn.Module] = None, | |
for_inference: bool = False, | |
**kwargs, | |
) -> LoRANetwork: | |
# get dim/alpha mapping | |
modules_dim = {} | |
modules_alpha = {} | |
for key, value in weights_sd.items(): | |
if "." not in key: | |
continue | |
lora_name = key.split(".")[0] | |
if "alpha" in key: | |
modules_alpha[lora_name] = value | |
elif "lora_down" in key: | |
dim = value.shape[0] | |
modules_dim[lora_name] = dim | |
# logger.info(lora_name, value.size(), dim) | |
module_class = LoRAInfModule if for_inference else LoRAModule | |
network = LoRANetwork( | |
target_replace_modules, | |
"lora_unet", | |
text_encoders, | |
unet, | |
multiplier=multiplier, | |
modules_dim=modules_dim, | |
modules_alpha=modules_alpha, | |
module_class=module_class, | |
) | |
return network | |