rahul7star's picture
Upload 303 files
e0336bc verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
from typing import Optional, Union
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from accelerate import init_empty_weights
import logging
from utils.safetensors_utils import MemoryEfficientSafeOpen, load_safetensors
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from utils.device_utils import clean_memory_on_device
from .attention import flash_attention
from utils.device_utils import clean_memory_on_device
from modules.custom_offloading_utils import ModelOffloader
from modules.fp8_optimization_utils import apply_fp8_monkey_patch, optimize_state_dict_with_fp8
__all__ = ["WanModel"]
def sinusoidal_embedding_1d(dim, position):
# preprocess
assert dim % 2 == 0
half = dim // 2
position = position.type(torch.float64)
# calculation
sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x
# @amp.autocast(enabled=False)
# no autocast is needed for rope_apply, because it is already in float64
def rope_params(max_seq_len, dim, theta=10000):
assert dim % 2 == 0
freqs = torch.outer(torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim)))
freqs = torch.polar(torch.ones_like(freqs), freqs)
return freqs
# @amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
device_type = x.device.type
with torch.amp.autocast(device_type=device_type, enabled=False):
n, c = x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2))
freqs_i = torch.cat(
[
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
).reshape(seq_len, 1, -1)
# apply rotary embedding
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
x_i = torch.cat([x_i, x[i, seq_len:]])
# append to collection
output.append(x_i)
return torch.stack(output).float()
def calculate_freqs_i(fhw, c, freqs):
f, h, w = fhw
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
freqs_i = torch.cat(
[
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
).reshape(f * h * w, 1, -1)
return freqs_i
# inplace version of rope_apply
def rope_apply_inplace_cached(x, grid_sizes, freqs_list):
# with torch.amp.autocast(device_type=device_type, enabled=False):
rope_dtype = torch.float64 # float32 does not reduce memory usage significantly
n, c = x.size(2), x.size(3) // 2
# loop over samples
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :seq_len].to(rope_dtype).reshape(seq_len, n, -1, 2))
freqs_i = freqs_list[i]
# apply rotary embedding
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
# x_i = torch.cat([x_i, x[i, seq_len:]])
# inplace update
x[i, :seq_len] = x_i.to(x.dtype)
return x
class WanRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
# return self._norm(x.float()).type_as(x) * self.weight
# support fp8
return self._norm(x.float()).type_as(x) * self.weight.to(x.dtype)
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
# def forward(self, x):
# r"""
# Args:
# x(Tensor): Shape [B, L, C]
# """
# # inplace version, also supports fp8 -> does not have significant performance improvement
# original_dtype = x.dtype
# x = x.float()
# y = x.pow(2).mean(dim=-1, keepdim=True)
# y.add_(self.eps)
# y.rsqrt_()
# x *= y
# x = x.to(original_dtype)
# x *= self.weight.to(original_dtype)
# return x
class WanLayerNorm(nn.LayerNorm):
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
return super().forward(x.float()).type_as(x)
class WanSelfAttention(nn.Module):
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
self.attn_mode = attn_mode
self.split_attn = split_attn
# layers
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, seq_lens, grid_sizes, freqs):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
seq_lens(Tensor): Shape [B]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# # query, key, value function
# def qkv_fn(x):
# q = self.norm_q(self.q(x)).view(b, s, n, d)
# k = self.norm_k(self.k(x)).view(b, s, n, d)
# v = self.v(x).view(b, s, n, d)
# return q, k, v
# q, k, v = qkv_fn(x)
# del x
# query, key, value function
q = self.q(x)
k = self.k(x)
v = self.v(x)
del x
q = self.norm_q(q)
k = self.norm_k(k)
q = q.view(b, s, n, d)
k = k.view(b, s, n, d)
v = v.view(b, s, n, d)
rope_apply_inplace_cached(q, grid_sizes, freqs)
rope_apply_inplace_cached(k, grid_sizes, freqs)
qkv = [q, k, v]
del q, k, v
x = flash_attention(
qkv, k_lens=seq_lens, window_size=self.window_size, attn_mode=self.attn_mode, split_attn=self.split_attn
)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context, context_lens):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
# q = self.norm_q(self.q(x)).view(b, -1, n, d)
# k = self.norm_k(self.k(context)).view(b, -1, n, d)
# v = self.v(context).view(b, -1, n, d)
q = self.q(x)
del x
k = self.k(context)
v = self.v(context)
del context
q = self.norm_q(q)
k = self.norm_k(k)
q = q.view(b, -1, n, d)
k = k.view(b, -1, n, d)
v = v.view(b, -1, n, d)
# compute attention
qkv = [q, k, v]
del q, k, v
x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
super().__init__(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, context, context_lens):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
context_img = context[:, :257]
context = context[:, 257:]
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.q(x)
del x
q = self.norm_q(q)
q = q.view(b, -1, n, d)
k = self.k(context)
k = self.norm_k(k).view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
del context
# compute attention
qkv = [q, k, v]
del k, v
x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)
# compute query, key, value
k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
v_img = self.v_img(context_img).view(b, -1, n, d)
del context_img
# compute attention
qkv = [q, k_img, v_img]
del q, k_img, v_img
img_x = flash_attention(qkv, k_lens=None, attn_mode=self.attn_mode, split_attn=self.split_attn)
# output
x = x.flatten(2)
img_x = img_x.flatten(2)
if self.training:
x = x + img_x # avoid inplace
else:
x += img_x
del img_x
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
"t2v_cross_attn": WanT2VCrossAttention,
"i2v_cross_attn": WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
attn_mode="torch",
split_attn=False,
):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)
self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps, attn_mode, split_attn)
self.norm2 = WanLayerNorm(dim, eps)
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim))
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
self.gradient_checkpointing = False
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
def _forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
seq_lens(Tensor): Shape [B], length of each sequence in batch
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
# e = (self.modulation + e).chunk(6, dim=1)
# support fp8
e = self.modulation.to(torch.float32) + e
e = e.chunk(6, dim=1)
assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs)
# with amp.autocast(dtype=torch.float32):
# x = x + y * e[2]
x = x + y.to(torch.float32) * e[2]
del y
# cross-attention & ffn function
# def cross_attn_ffn(x, context, context_lens, e):
# x += self.cross_attn(self.norm3(x), context, context_lens)
# y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
# # with amp.autocast(dtype=torch.float32):
# # x = x + y * e[5]
# x += y.to(torch.float32) * e[5]
# return x
# x = cross_attn_ffn(x, context, context_lens, e)
# x += self.cross_attn(self.norm3(x), context, context_lens) # backward error
x = x + self.cross_attn(self.norm3(x), context, context_lens)
del context
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
x = x + y.to(torch.float32) * e[5]
del y
return x
def forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, x, e, seq_lens, grid_sizes, freqs, context, context_lens, use_reentrant=False)
return self._forward(x, e, seq_lens, grid_sizes, freqs, context, context_lens)
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_dim)
# modulation
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, C]
"""
assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
# e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
# x = self.head(self.norm(x) * (1 + e[1]) + e[0])
# support fp8
e = (self.modulation.to(torch.float32) + e.unsqueeze(1)).chunk(2, dim=1)
x = self.head(self.norm(x) * (1 + e[1]) + e[0])
return x
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.LayerNorm(in_dim),
torch.nn.Linear(in_dim, in_dim),
torch.nn.GELU(),
torch.nn.Linear(in_dim, out_dim),
torch.nn.LayerNorm(out_dim),
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class WanModel(nn.Module): # ModelMixin, ConfigMixin):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"]
_no_split_modules = ["WanAttentionBlock"]
# @register_to_config
def __init__(
self,
model_type="t2v",
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
attn_mode=None,
split_attn=False,
):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
assert model_type in ["t2v", "i2v"]
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
self.attn_mode = attn_mode if attn_mode is not None else "torch"
self.split_attn = split_attn
# embeddings
self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim))
self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
self.blocks = nn.ModuleList(
[
WanAttentionBlock(
cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, attn_mode, split_attn
)
for _ in range(num_layers)
]
)
# head
self.head = Head(dim, out_dim, patch_size, eps)
# buffers (don't use register_buffer otherwise dtype will be changed in to())
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads
self.freqs = torch.cat(
[rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))], dim=1
)
self.freqs_fhw = {}
if model_type == "i2v":
self.img_emb = MLPProj(1280, dim)
# initialize weights
self.init_weights()
self.gradient_checkpointing = False
# offloading
self.blocks_to_swap = None
self.offloader = None
@property
def dtype(self):
return next(self.parameters()).dtype
@property
def device(self):
return next(self.parameters()).device
def fp8_optimization(self, state_dict: dict[str, torch.Tensor], device: torch.device, move_to_device: bool) -> int:
"""
Optimize the model state_dict with fp8.
Args:
state_dict (dict[str, torch.Tensor]):
The state_dict of the model.
device (torch.device):
The device to calculate the weight.
move_to_device (bool):
Whether to move the weight to the device after optimization.
"""
TARGET_KEYS = ["blocks"]
EXCLUDE_KEYS = [
"norm",
"patch_embedding",
"text_embedding",
"time_embedding",
"time_projection",
"head",
"modulation",
"img_emb",
]
# inplace optimization
state_dict = optimize_state_dict_with_fp8(state_dict, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device)
# apply monkey patching
apply_fp8_monkey_patch(self, state_dict)
return state_dict
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
for block in self.blocks:
block.enable_gradient_checkpointing()
print(f"WanModel: Gradient checkpointing enabled.")
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
for block in self.blocks:
block.disable_gradient_checkpointing()
print(f"WanModel: Gradient checkpointing disabled.")
def enable_block_swap(self, blocks_to_swap: int, device: torch.device, supports_backward: bool):
self.blocks_to_swap = blocks_to_swap
self.num_blocks = len(self.blocks)
assert (
self.blocks_to_swap <= self.num_blocks - 1
), f"Cannot swap more than {self.num_blocks - 1} blocks. Requested {self.blocks_to_swap} blocks to swap."
self.offloader = ModelOffloader(
"wan_attn_block", self.blocks, self.num_blocks, self.blocks_to_swap, supports_backward, device # , debug=True
)
print(
f"WanModel: Block swap enabled. Swapping {self.blocks_to_swap} blocks out of {self.num_blocks} blocks. Supports backward: {supports_backward}"
)
def switch_block_swap_for_inference(self):
if self.blocks_to_swap:
self.offloader.set_forward_only(True)
self.prepare_block_swap_before_forward()
print(f"WanModel: Block swap set to forward only.")
def switch_block_swap_for_training(self):
if self.blocks_to_swap:
self.offloader.set_forward_only(False)
self.prepare_block_swap_before_forward()
print(f"WanModel: Block swap set to forward and backward.")
def move_to_device_except_swap_blocks(self, device: torch.device):
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage
if self.blocks_to_swap:
save_blocks = self.blocks
self.blocks = None
self.to(device)
if self.blocks_to_swap:
self.blocks = save_blocks
def prepare_block_swap_before_forward(self):
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
self.offloader.prepare_block_devices_before_forward(self.blocks)
def forward(self, x, t, context, seq_len, clip_fea=None, y=None):
r"""
Forward pass through the diffusion model
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
if self.model_type == "i2v":
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
y = None
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
freqs_list = []
for fhw in grid_sizes:
fhw = tuple(fhw.tolist())
if fhw not in self.freqs_fhw:
c = self.dim // self.num_heads // 2
self.freqs_fhw[fhw] = calculate_freqs_i(fhw, c, self.freqs)
freqs_list.append(self.freqs_fhw[fhw])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len, f"Sequence length exceeds maximum allowed length {seq_len}. Got {seq_lens.max()}"
x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])
# time embeddings
# with amp.autocast(dtype=torch.float32):
with torch.amp.autocast(device_type=device.type, dtype=torch.float32):
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
if type(context) is list:
context = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context])
context = self.text_embedding(context)
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
clip_fea = None
context_clip = None
# arguments
kwargs = dict(e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=freqs_list, context=context, context_lens=context_lens)
if self.blocks_to_swap:
clean_memory_on_device(device)
# print(f"x: {x.shape}, e: {e0.shape}, context: {context.shape}, seq_lens: {seq_lens}")
for block_idx, block in enumerate(self.blocks):
if self.blocks_to_swap:
self.offloader.wait_for_block(block_idx)
x = block(x, **kwargs)
if self.blocks_to_swap:
self.offloader.submit_move_blocks_forward(self.blocks, block_idx)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return [u.float() for u in x]
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
"""
c = self.out_dim
out = []
for u, v in zip(x, grid_sizes.tolist()):
u = u[: math.prod(v)].view(*v, *self.patch_size, c)
u = torch.einsum("fhwpqrc->cfphqwr", u)
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
out.append(u)
return out
def init_weights(self):
r"""
Initialize model parameters using Xavier initialization.
"""
# basic init
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
# init embeddings
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
for m in self.text_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
for m in self.time_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
# init output layer
nn.init.zeros_(self.head.head.weight)
def detect_wan_sd_dtype(path: str) -> torch.dtype:
# get dtype from model weights
with MemoryEfficientSafeOpen(path) as f:
keys = set(f.keys())
key1 = "model.diffusion_model.blocks.0.cross_attn.k.weight" # 1.3B
key2 = "blocks.0.cross_attn.k.weight" # 14B
if key1 in keys:
dit_dtype = f.get_tensor(key1).dtype
elif key2 in keys:
dit_dtype = f.get_tensor(key2).dtype
else:
raise ValueError(f"Could not find the dtype in the model weights: {path}")
logger.info(f"Detected DiT dtype: {dit_dtype}")
return dit_dtype
def load_wan_model(
config: any,
i2v: bool,
device: Union[str, torch.device],
dit_path: str,
attn_mode: str,
split_attn: bool,
loading_device: Union[str, torch.device],
dit_weight_dtype: Optional[torch.dtype],
fp8_scaled: bool = False,
) -> WanModel:
# dit_weight_dtype is None for fp8_scaled
assert (not fp8_scaled and dit_weight_dtype is not None) or (fp8_scaled and dit_weight_dtype is None)
device = torch.device(device)
loading_device = torch.device(loading_device)
with init_empty_weights():
logger.info(f"Creating WanModel")
model = WanModel(
model_type="i2v" if i2v else "t2v",
dim=config.dim,
eps=config.eps,
ffn_dim=config.ffn_dim,
freq_dim=config.freq_dim,
in_dim=36 if i2v else 16, # 36 for I2V, 16 for T2V
num_heads=config.num_heads,
num_layers=config.num_layers,
out_dim=16,
text_len=512,
attn_mode=attn_mode,
split_attn=split_attn,
)
if dit_weight_dtype is not None:
model.to(dit_weight_dtype)
# if fp8_scaled, load model weights to CPU to reduce VRAM usage. Otherwise, load to the specified device (CPU for block swap or CUDA for others)
wan_loading_device = torch.device("cpu") if fp8_scaled else loading_device
logger.info(f"Loading DiT model from {dit_path}, device={wan_loading_device}, dtype={dit_weight_dtype}")
# load model weights with the specified dtype or as is
sd = load_safetensors(dit_path, wan_loading_device, disable_mmap=True, dtype=dit_weight_dtype)
# remove "model.diffusion_model." prefix: 1.3B model has this prefix
for key in list(sd.keys()):
if key.startswith("model.diffusion_model."):
sd[key[22:]] = sd.pop(key)
if fp8_scaled:
# fp8 optimization: calculate on CUDA, move back to CPU if loading_device is CPU (block swap)
logger.info(f"Optimizing model weights to fp8. This may take a while.")
sd = model.fp8_optimization(sd, device, move_to_device=loading_device.type == "cpu")
if loading_device.type != "cpu":
# make sure all the model weights are on the loading_device
logger.info(f"Moving weights to {loading_device}")
for key in sd.keys():
sd[key] = sd[key].to(loading_device)
info = model.load_state_dict(sd, strict=True, assign=True)
logger.info(f"Loaded DiT model from {dit_path}, info={info}")
return model