Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import math | |
from typing import Optional, Union | |
import torch | |
import torch.nn as nn | |
from torch.utils.checkpoint import checkpoint | |
from accelerate import init_empty_weights | |
import logging | |
from utils.safetensors_utils import MemoryEfficientSafeOpen, load_safetensors | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO) | |
from utils.device_utils import clean_memory_on_device | |
from .attention import flash_attention | |
from utils.device_utils import clean_memory_on_device | |
from modules.custom_offloading_utils import ModelOffloader | |
from modules.fp8_optimization_utils import apply_fp8_monkey_patch, optimize_state_dict_with_fp8 | |
__all__ = ["WanModel"] | |
def sinusoidal_embedding_1d(dim, position): | |
# preprocess | |
assert dim % 2 == 0 | |
half = dim // 2 | |
position = position.type(torch.float64) | |
# calculation | |
sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
return x | |
# @amp.autocast(enabled=False) | |
# no autocast is needed for rope_apply, because it is already in float64 | |
def rope_params(max_seq_len, dim, theta=10000): | |
assert dim % 2 == 0 | |
freqs = torch.outer(torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim))) | |
freqs = torch.polar(torch.ones_like(freqs), freqs) | |
return freqs | |
# @amp.autocast(enabled=False) | |
def rope_apply(x, grid_sizes, freqs): | |
device_type = x.device.type | |
with torch.amp.autocast(device_type=device_type, enabled=False): | |
n, c = x.size(2), x.size(3) // 2 | |
# split freqs | |
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
# loop over samples | |
output = [] | |
for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
seq_len = f * h * w | |
# precompute multipliers | |
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2)) | |
freqs_i = torch.cat( | |
[ | |
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1), | |
], | |
dim=-1, | |
).reshape(seq_len, 1, -1) | |
# apply rotary embedding | |
x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
x_i = torch.cat([x_i, x[i, seq_len:]]) | |
# append to collection | |
output.append(x_i) | |
return torch.stack(output).float() | |
def calculate_freqs_i(fhw, c, freqs): | |
f, h, w = fhw | |
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
freqs_i = torch.cat( | |
[ | |
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1), | |
], | |
dim=-1, | |
).reshape(f * h * w, 1, -1) | |
return freqs_i | |
# inplace version of rope_apply | |
def rope_apply_inplace_cached(x, grid_sizes, freqs_list): | |
# with torch.amp.autocast(device_type=device_type, enabled=False): | |
rope_dtype = torch.float64 # float32 does not reduce memory usage significantly | |
n, c = x.size(2), x.size(3) // 2 | |
# loop over samples | |
for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
seq_len = f * h * w | |
# precompute multipliers | |
x_i = torch.view_as_complex(x[i, :seq_len].to(rope_dtype).reshape(seq_len, n, -1, 2)) | |
freqs_i = freqs_list[i] | |
# apply rotary embedding | |
x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
# x_i = torch.cat([x_i, x[i, seq_len:]]) | |
# inplace update | |
x[i, :seq_len] = x_i.to(x.dtype) | |
return x | |
class WanRMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.dim = dim | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
""" | |
# return self._norm(x.float()).type_as(x) * self.weight | |
# support fp8 | |
return self._norm(x.float()).type_as(x) * self.weight.to(x.dtype) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
# def forward(self, x): | |
# r""" | |
# Args: | |
# x(Tensor): Shape [B, L, C] | |
# """ | |
# # inplace version, also supports fp8 -> does not have significant performance improvement | |
# original_dtype = x.dtype | |
# x = x.float() | |
# y = x.pow(2).mean(dim=-1, keepdim=True) | |
# y.add_(self.eps) | |
# y.rsqrt_() | |
# x *= y | |
# x = x.to(original_dtype) | |
# x *= self.weight.to(original_dtype) | |
# return x | |
class WanLayerNorm(nn.LayerNorm): | |
def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
def forward(self, x): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
""" | |
return super().forward(x.float()).type_as(x) | |
class WanSelfAttention(nn.Module): | |
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.eps = eps | |
self.attn_mode = attn_mode | |
self.split_attn = split_attn | |
# layers | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
self.o = nn.Linear(dim, dim) | |
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
def forward(self, x, seq_lens, grid_sizes, freqs): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
seq_lens(Tensor): Shape [B] | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
# # query, key, value function | |
# def qkv_fn(x): | |
# q = self.norm_q(self.q(x)).view(b, s, n, d) | |
# k = self.norm_k(self.k(x)).view(b, s, n, d) | |
# v = self.v(x).view(b, s, n, d) | |
# return q, k, v | |
# q, k, v = qkv_fn(x) | |
# del x | |
# query, key, value function | |
q = self.q(x) | |
k = self.k(x) | |
v = self.v(x) | |
del x | |
q = self.norm_q(q) | |
k = self.norm_k(k) | |
q = q.view(b, s, n, d) | |
k = k.view(b, s, n, d) | |
v = v.view(b, s, n, d) | |
rope_apply_inplace_cached(q, grid_sizes, freqs) | |
rope_apply_inplace_cached(k, grid_sizes, freqs) | |
qkv = [q, k, v] | |
del q, k, v | |
x = flash_attention( | |
qkv, k_lens=seq_lens, window_size=self.window_size, attn_mode=self.attn_mode, split_attn=self.split_attn | |
) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanT2VCrossAttention(WanSelfAttention): | |
def forward(self, x, context, context_lens): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
context_lens(Tensor): Shape [B] | |
""" | |
b, n, d = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
# q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
# k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
# v = self.v(context).view(b, -1, n, d) | |
q = self.q(x) | |
del x | |
k = self.k(context) | |
v = self.v(context) | |
del context | |
q = self.norm_q(q) | |
k = self.norm_k(k) | |
q = q.view(b, -1, n, d) | |
k = k.view(b, -1, n, d) | |
v = v.view(b, -1, n, d) | |
# compute attention | |
qkv = [q, k, v] | |
del q, k, v | |
x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanI2VCrossAttention(WanSelfAttention): | |
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False): | |
super().__init__(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn) | |
self.k_img = nn.Linear(dim, dim) | |
self.v_img = nn.Linear(dim, dim) | |
# self.alpha = nn.Parameter(torch.zeros((1, ))) | |
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
def forward(self, x, context, context_lens): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
context_lens(Tensor): Shape [B] | |
""" | |
context_img = context[:, :257] | |
context = context[:, 257:] | |
b, n, d = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.q(x) | |
del x | |
q = self.norm_q(q) | |
q = q.view(b, -1, n, d) | |
k = self.k(context) | |
k = self.norm_k(k).view(b, -1, n, d) | |
v = self.v(context).view(b, -1, n, d) | |
del context | |
# compute attention | |
qkv = [q, k, v] | |
del k, v | |
x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn) | |
# compute query, key, value | |
k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
v_img = self.v_img(context_img).view(b, -1, n, d) | |
del context_img | |
# compute attention | |
qkv = [q, k_img, v_img] | |
del q, k_img, v_img | |
img_x = flash_attention(qkv, k_lens=None, attn_mode=self.attn_mode, split_attn=self.split_attn) | |
# output | |
x = x.flatten(2) | |
img_x = img_x.flatten(2) | |
if self.training: | |
x = x + img_x # avoid inplace | |
else: | |
x += img_x | |
del img_x | |
x = self.o(x) | |
return x | |
WAN_CROSSATTENTION_CLASSES = { | |
"t2v_cross_attn": WanT2VCrossAttention, | |
"i2v_cross_attn": WanI2VCrossAttention, | |
} | |
class WanAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
cross_attn_type, | |
dim, | |
ffn_dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6, | |
attn_mode="torch", | |
split_attn=False, | |
): | |
super().__init__() | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# layers | |
self.norm1 = WanLayerNorm(dim, eps) | |
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn) | |
self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps, attn_mode, split_attn) | |
self.norm2 = WanLayerNorm(dim, eps) | |
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim)) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
self.gradient_checkpointing = False | |
def enable_gradient_checkpointing(self): | |
self.gradient_checkpointing = True | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
def _forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
e(Tensor): Shape [B, 6, C] | |
seq_lens(Tensor): Shape [B], length of each sequence in batch | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
assert e.dtype == torch.float32 | |
# with amp.autocast(dtype=torch.float32): | |
# e = (self.modulation + e).chunk(6, dim=1) | |
# support fp8 | |
e = self.modulation.to(torch.float32) + e | |
e = e.chunk(6, dim=1) | |
assert e[0].dtype == torch.float32 | |
# self-attention | |
y = self.self_attn(self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs) | |
# with amp.autocast(dtype=torch.float32): | |
# x = x + y * e[2] | |
x = x + y.to(torch.float32) * e[2] | |
del y | |
# cross-attention & ffn function | |
# def cross_attn_ffn(x, context, context_lens, e): | |
# x += self.cross_attn(self.norm3(x), context, context_lens) | |
# y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) | |
# # with amp.autocast(dtype=torch.float32): | |
# # x = x + y * e[5] | |
# x += y.to(torch.float32) * e[5] | |
# return x | |
# x = cross_attn_ffn(x, context, context_lens, e) | |
# x += self.cross_attn(self.norm3(x), context, context_lens) # backward error | |
x = x + self.cross_attn(self.norm3(x), context, context_lens) | |
del context | |
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3]) | |
x = x + y.to(torch.float32) * e[5] | |
del y | |
return x | |
def forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens): | |
if self.training and self.gradient_checkpointing: | |
return checkpoint(self._forward, x, e, seq_lens, grid_sizes, freqs, context, context_lens, use_reentrant=False) | |
return self._forward(x, e, seq_lens, grid_sizes, freqs, context, context_lens) | |
class Head(nn.Module): | |
def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
super().__init__() | |
self.dim = dim | |
self.out_dim = out_dim | |
self.patch_size = patch_size | |
self.eps = eps | |
# layers | |
out_dim = math.prod(patch_size) * out_dim | |
self.norm = WanLayerNorm(dim, eps) | |
self.head = nn.Linear(dim, out_dim) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
def forward(self, x, e): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
e(Tensor): Shape [B, C] | |
""" | |
assert e.dtype == torch.float32 | |
# with amp.autocast(dtype=torch.float32): | |
# e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
# x = self.head(self.norm(x) * (1 + e[1]) + e[0]) | |
# support fp8 | |
e = (self.modulation.to(torch.float32) + e.unsqueeze(1)).chunk(2, dim=1) | |
x = self.head(self.norm(x) * (1 + e[1]) + e[0]) | |
return x | |
class MLPProj(torch.nn.Module): | |
def __init__(self, in_dim, out_dim): | |
super().__init__() | |
self.proj = torch.nn.Sequential( | |
torch.nn.LayerNorm(in_dim), | |
torch.nn.Linear(in_dim, in_dim), | |
torch.nn.GELU(), | |
torch.nn.Linear(in_dim, out_dim), | |
torch.nn.LayerNorm(out_dim), | |
) | |
def forward(self, image_embeds): | |
clip_extra_context_tokens = self.proj(image_embeds) | |
return clip_extra_context_tokens | |
class WanModel(nn.Module): # ModelMixin, ConfigMixin): | |
r""" | |
Wan diffusion backbone supporting both text-to-video and image-to-video. | |
""" | |
ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"] | |
_no_split_modules = ["WanAttentionBlock"] | |
# @register_to_config | |
def __init__( | |
self, | |
model_type="t2v", | |
patch_size=(1, 2, 2), | |
text_len=512, | |
in_dim=16, | |
dim=2048, | |
ffn_dim=8192, | |
freq_dim=256, | |
text_dim=4096, | |
out_dim=16, | |
num_heads=16, | |
num_layers=32, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=True, | |
eps=1e-6, | |
attn_mode=None, | |
split_attn=False, | |
): | |
r""" | |
Initialize the diffusion model backbone. | |
Args: | |
model_type (`str`, *optional*, defaults to 't2v'): | |
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
text_len (`int`, *optional*, defaults to 512): | |
Fixed length for text embeddings | |
in_dim (`int`, *optional*, defaults to 16): | |
Input video channels (C_in) | |
dim (`int`, *optional*, defaults to 2048): | |
Hidden dimension of the transformer | |
ffn_dim (`int`, *optional*, defaults to 8192): | |
Intermediate dimension in feed-forward network | |
freq_dim (`int`, *optional*, defaults to 256): | |
Dimension for sinusoidal time embeddings | |
text_dim (`int`, *optional*, defaults to 4096): | |
Input dimension for text embeddings | |
out_dim (`int`, *optional*, defaults to 16): | |
Output video channels (C_out) | |
num_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads | |
num_layers (`int`, *optional*, defaults to 32): | |
Number of transformer blocks | |
window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
Window size for local attention (-1 indicates global attention) | |
qk_norm (`bool`, *optional*, defaults to True): | |
Enable query/key normalization | |
cross_attn_norm (`bool`, *optional*, defaults to False): | |
Enable cross-attention normalization | |
eps (`float`, *optional*, defaults to 1e-6): | |
Epsilon value for normalization layers | |
""" | |
super().__init__() | |
assert model_type in ["t2v", "i2v"] | |
self.model_type = model_type | |
self.patch_size = patch_size | |
self.text_len = text_len | |
self.in_dim = in_dim | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.freq_dim = freq_dim | |
self.text_dim = text_dim | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
self.attn_mode = attn_mode if attn_mode is not None else "torch" | |
self.split_attn = split_attn | |
# embeddings | |
self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim)) | |
self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
# blocks | |
cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn" | |
self.blocks = nn.ModuleList( | |
[ | |
WanAttentionBlock( | |
cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, attn_mode, split_attn | |
) | |
for _ in range(num_layers) | |
] | |
) | |
# head | |
self.head = Head(dim, out_dim, patch_size, eps) | |
# buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
d = dim // num_heads | |
self.freqs = torch.cat( | |
[rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))], dim=1 | |
) | |
self.freqs_fhw = {} | |
if model_type == "i2v": | |
self.img_emb = MLPProj(1280, dim) | |
# initialize weights | |
self.init_weights() | |
self.gradient_checkpointing = False | |
# offloading | |
self.blocks_to_swap = None | |
self.offloader = None | |
def dtype(self): | |
return next(self.parameters()).dtype | |
def device(self): | |
return next(self.parameters()).device | |
def fp8_optimization(self, state_dict: dict[str, torch.Tensor], device: torch.device, move_to_device: bool) -> int: | |
""" | |
Optimize the model state_dict with fp8. | |
Args: | |
state_dict (dict[str, torch.Tensor]): | |
The state_dict of the model. | |
device (torch.device): | |
The device to calculate the weight. | |
move_to_device (bool): | |
Whether to move the weight to the device after optimization. | |
""" | |
TARGET_KEYS = ["blocks"] | |
EXCLUDE_KEYS = [ | |
"norm", | |
"patch_embedding", | |
"text_embedding", | |
"time_embedding", | |
"time_projection", | |
"head", | |
"modulation", | |
"img_emb", | |
] | |
# inplace optimization | |
state_dict = optimize_state_dict_with_fp8(state_dict, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device) | |
# apply monkey patching | |
apply_fp8_monkey_patch(self, state_dict) | |
return state_dict | |
def enable_gradient_checkpointing(self): | |
self.gradient_checkpointing = True | |
for block in self.blocks: | |
block.enable_gradient_checkpointing() | |
print(f"WanModel: Gradient checkpointing enabled.") | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
for block in self.blocks: | |
block.disable_gradient_checkpointing() | |
print(f"WanModel: Gradient checkpointing disabled.") | |
def enable_block_swap(self, blocks_to_swap: int, device: torch.device, supports_backward: bool): | |
self.blocks_to_swap = blocks_to_swap | |
self.num_blocks = len(self.blocks) | |
assert ( | |
self.blocks_to_swap <= self.num_blocks - 1 | |
), f"Cannot swap more than {self.num_blocks - 1} blocks. Requested {self.blocks_to_swap} blocks to swap." | |
self.offloader = ModelOffloader( | |
"wan_attn_block", self.blocks, self.num_blocks, self.blocks_to_swap, supports_backward, device # , debug=True | |
) | |
print( | |
f"WanModel: Block swap enabled. Swapping {self.blocks_to_swap} blocks out of {self.num_blocks} blocks. Supports backward: {supports_backward}" | |
) | |
def switch_block_swap_for_inference(self): | |
if self.blocks_to_swap: | |
self.offloader.set_forward_only(True) | |
self.prepare_block_swap_before_forward() | |
print(f"WanModel: Block swap set to forward only.") | |
def switch_block_swap_for_training(self): | |
if self.blocks_to_swap: | |
self.offloader.set_forward_only(False) | |
self.prepare_block_swap_before_forward() | |
print(f"WanModel: Block swap set to forward and backward.") | |
def move_to_device_except_swap_blocks(self, device: torch.device): | |
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage | |
if self.blocks_to_swap: | |
save_blocks = self.blocks | |
self.blocks = None | |
self.to(device) | |
if self.blocks_to_swap: | |
self.blocks = save_blocks | |
def prepare_block_swap_before_forward(self): | |
if self.blocks_to_swap is None or self.blocks_to_swap == 0: | |
return | |
self.offloader.prepare_block_devices_before_forward(self.blocks) | |
def forward(self, x, t, context, seq_len, clip_fea=None, y=None): | |
r""" | |
Forward pass through the diffusion model | |
Args: | |
x (List[Tensor]): | |
List of input video tensors, each with shape [C_in, F, H, W] | |
t (Tensor): | |
Diffusion timesteps tensor of shape [B] | |
context (List[Tensor]): | |
List of text embeddings each with shape [L, C] | |
seq_len (`int`): | |
Maximum sequence length for positional encoding | |
clip_fea (Tensor, *optional*): | |
CLIP image features for image-to-video mode | |
y (List[Tensor], *optional*): | |
Conditional video inputs for image-to-video mode, same shape as x | |
Returns: | |
List[Tensor]: | |
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
""" | |
if self.model_type == "i2v": | |
assert clip_fea is not None and y is not None | |
# params | |
device = self.patch_embedding.weight.device | |
if self.freqs.device != device: | |
self.freqs = self.freqs.to(device) | |
if y is not None: | |
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
y = None | |
# embeddings | |
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
freqs_list = [] | |
for fhw in grid_sizes: | |
fhw = tuple(fhw.tolist()) | |
if fhw not in self.freqs_fhw: | |
c = self.dim // self.num_heads // 2 | |
self.freqs_fhw[fhw] = calculate_freqs_i(fhw, c, self.freqs) | |
freqs_list.append(self.freqs_fhw[fhw]) | |
x = [u.flatten(2).transpose(1, 2) for u in x] | |
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
assert seq_lens.max() <= seq_len, f"Sequence length exceeds maximum allowed length {seq_len}. Got {seq_lens.max()}" | |
x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x]) | |
# time embeddings | |
# with amp.autocast(dtype=torch.float32): | |
with torch.amp.autocast(device_type=device.type, dtype=torch.float32): | |
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float()) | |
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
# context | |
context_lens = None | |
if type(context) is list: | |
context = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context]) | |
context = self.text_embedding(context) | |
if clip_fea is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = torch.concat([context_clip, context], dim=1) | |
clip_fea = None | |
context_clip = None | |
# arguments | |
kwargs = dict(e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=freqs_list, context=context, context_lens=context_lens) | |
if self.blocks_to_swap: | |
clean_memory_on_device(device) | |
# print(f"x: {x.shape}, e: {e0.shape}, context: {context.shape}, seq_lens: {seq_lens}") | |
for block_idx, block in enumerate(self.blocks): | |
if self.blocks_to_swap: | |
self.offloader.wait_for_block(block_idx) | |
x = block(x, **kwargs) | |
if self.blocks_to_swap: | |
self.offloader.submit_move_blocks_forward(self.blocks, block_idx) | |
# head | |
x = self.head(x, e) | |
# unpatchify | |
x = self.unpatchify(x, grid_sizes) | |
return [u.float() for u in x] | |
def unpatchify(self, x, grid_sizes): | |
r""" | |
Reconstruct video tensors from patch embeddings. | |
Args: | |
x (List[Tensor]): | |
List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
grid_sizes (Tensor): | |
Original spatial-temporal grid dimensions before patching, | |
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
Returns: | |
List[Tensor]: | |
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
""" | |
c = self.out_dim | |
out = [] | |
for u, v in zip(x, grid_sizes.tolist()): | |
u = u[: math.prod(v)].view(*v, *self.patch_size, c) | |
u = torch.einsum("fhwpqrc->cfphqwr", u) | |
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
out.append(u) | |
return out | |
def init_weights(self): | |
r""" | |
Initialize model parameters using Xavier initialization. | |
""" | |
# basic init | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
# init embeddings | |
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
for m in self.text_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=0.02) | |
for m in self.time_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=0.02) | |
# init output layer | |
nn.init.zeros_(self.head.head.weight) | |
def detect_wan_sd_dtype(path: str) -> torch.dtype: | |
# get dtype from model weights | |
with MemoryEfficientSafeOpen(path) as f: | |
keys = set(f.keys()) | |
key1 = "model.diffusion_model.blocks.0.cross_attn.k.weight" # 1.3B | |
key2 = "blocks.0.cross_attn.k.weight" # 14B | |
if key1 in keys: | |
dit_dtype = f.get_tensor(key1).dtype | |
elif key2 in keys: | |
dit_dtype = f.get_tensor(key2).dtype | |
else: | |
raise ValueError(f"Could not find the dtype in the model weights: {path}") | |
logger.info(f"Detected DiT dtype: {dit_dtype}") | |
return dit_dtype | |
def load_wan_model( | |
config: any, | |
i2v: bool, | |
device: Union[str, torch.device], | |
dit_path: str, | |
attn_mode: str, | |
split_attn: bool, | |
loading_device: Union[str, torch.device], | |
dit_weight_dtype: Optional[torch.dtype], | |
fp8_scaled: bool = False, | |
) -> WanModel: | |
# dit_weight_dtype is None for fp8_scaled | |
assert (not fp8_scaled and dit_weight_dtype is not None) or (fp8_scaled and dit_weight_dtype is None) | |
device = torch.device(device) | |
loading_device = torch.device(loading_device) | |
with init_empty_weights(): | |
logger.info(f"Creating WanModel") | |
model = WanModel( | |
model_type="i2v" if i2v else "t2v", | |
dim=config.dim, | |
eps=config.eps, | |
ffn_dim=config.ffn_dim, | |
freq_dim=config.freq_dim, | |
in_dim=36 if i2v else 16, # 36 for I2V, 16 for T2V | |
num_heads=config.num_heads, | |
num_layers=config.num_layers, | |
out_dim=16, | |
text_len=512, | |
attn_mode=attn_mode, | |
split_attn=split_attn, | |
) | |
if dit_weight_dtype is not None: | |
model.to(dit_weight_dtype) | |
# if fp8_scaled, load model weights to CPU to reduce VRAM usage. Otherwise, load to the specified device (CPU for block swap or CUDA for others) | |
wan_loading_device = torch.device("cpu") if fp8_scaled else loading_device | |
logger.info(f"Loading DiT model from {dit_path}, device={wan_loading_device}, dtype={dit_weight_dtype}") | |
# load model weights with the specified dtype or as is | |
sd = load_safetensors(dit_path, wan_loading_device, disable_mmap=True, dtype=dit_weight_dtype) | |
# remove "model.diffusion_model." prefix: 1.3B model has this prefix | |
for key in list(sd.keys()): | |
if key.startswith("model.diffusion_model."): | |
sd[key[22:]] = sd.pop(key) | |
if fp8_scaled: | |
# fp8 optimization: calculate on CUDA, move back to CPU if loading_device is CPU (block swap) | |
logger.info(f"Optimizing model weights to fp8. This may take a while.") | |
sd = model.fp8_optimization(sd, device, move_to_device=loading_device.type == "cpu") | |
if loading_device.type != "cpu": | |
# make sure all the model weights are on the loading_device | |
logger.info(f"Moving weights to {loading_device}") | |
for key in sd.keys(): | |
sd[key] = sd[key].to(loading_device) | |
info = model.load_state_dict(sd, strict=True, assign=True) | |
logger.info(f"Loaded DiT model from {dit_path}, info={info}") | |
return model | |