Spaces:
Running
Running
# original code: https://github.com/lllyasviel/FramePack | |
# original license: Apache-2.0 | |
import glob | |
import math | |
import numbers | |
import os | |
from types import SimpleNamespace | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import torch | |
import einops | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from modules.custom_offloading_utils import ModelOffloader | |
from utils.safetensors_utils import load_split_weights | |
from modules.fp8_optimization_utils import apply_fp8_monkey_patch, optimize_state_dict_with_fp8 | |
from accelerate import init_empty_weights | |
try: | |
# raise NotImplementedError | |
from xformers.ops import memory_efficient_attention as xformers_attn_func | |
print("Xformers is installed!") | |
except: | |
print("Xformers is not installed!") | |
xformers_attn_func = None | |
try: | |
# raise NotImplementedError | |
from flash_attn import flash_attn_varlen_func, flash_attn_func | |
print("Flash Attn is installed!") | |
except: | |
print("Flash Attn is not installed!") | |
flash_attn_varlen_func = None | |
flash_attn_func = None | |
try: | |
# raise NotImplementedError | |
from sageattention import sageattn_varlen, sageattn | |
print("Sage Attn is installed!") | |
except: | |
print("Sage Attn is not installed!") | |
sageattn_varlen = None | |
sageattn = None | |
import logging | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.INFO) | |
# region diffusers | |
# copied from diffusers with some modifications to minimize dependencies | |
# original code: https://github.com/huggingface/diffusers/ | |
# original license: Apache-2.0 | |
ACT2CLS = { | |
"swish": nn.SiLU, | |
"silu": nn.SiLU, | |
"mish": nn.Mish, | |
"gelu": nn.GELU, | |
"relu": nn.ReLU, | |
} | |
def get_activation(act_fn: str) -> nn.Module: | |
"""Helper function to get activation function from string. | |
Args: | |
act_fn (str): Name of activation function. | |
Returns: | |
nn.Module: Activation function. | |
""" | |
act_fn = act_fn.lower() | |
if act_fn in ACT2CLS: | |
return ACT2CLS[act_fn]() | |
else: | |
raise ValueError(f"activation function {act_fn} not found in ACT2FN mapping {list(ACT2CLS.keys())}") | |
def get_timestep_embedding( | |
timesteps: torch.Tensor, | |
embedding_dim: int, | |
flip_sin_to_cos: bool = False, | |
downscale_freq_shift: float = 1, | |
scale: float = 1, | |
max_period: int = 10000, | |
): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. | |
Args | |
timesteps (torch.Tensor): | |
a 1-D Tensor of N indices, one per batch element. These may be fractional. | |
embedding_dim (int): | |
the dimension of the output. | |
flip_sin_to_cos (bool): | |
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False) | |
downscale_freq_shift (float): | |
Controls the delta between frequencies between dimensions | |
scale (float): | |
Scaling factor applied to the embeddings. | |
max_period (int): | |
Controls the maximum frequency of the embeddings | |
Returns | |
torch.Tensor: an [N x dim] Tensor of positional embeddings. | |
""" | |
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" | |
half_dim = embedding_dim // 2 | |
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) | |
exponent = exponent / (half_dim - downscale_freq_shift) | |
emb = torch.exp(exponent) | |
emb = timesteps[:, None].float() * emb[None, :] | |
# scale embeddings | |
emb = scale * emb | |
# concat sine and cosine embeddings | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) | |
# flip sine and cosine embeddings | |
if flip_sin_to_cos: | |
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) | |
# zero pad | |
if embedding_dim % 2 == 1: | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |
class TimestepEmbedding(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
time_embed_dim: int, | |
act_fn: str = "silu", | |
out_dim: int = None, | |
post_act_fn: Optional[str] = None, | |
cond_proj_dim=None, | |
sample_proj_bias=True, | |
): | |
super().__init__() | |
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias) | |
if cond_proj_dim is not None: | |
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) | |
else: | |
self.cond_proj = None | |
self.act = get_activation(act_fn) | |
if out_dim is not None: | |
time_embed_dim_out = out_dim | |
else: | |
time_embed_dim_out = time_embed_dim | |
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias) | |
if post_act_fn is None: | |
self.post_act = None | |
else: | |
self.post_act = get_activation(post_act_fn) | |
def forward(self, sample, condition=None): | |
if condition is not None: | |
sample = sample + self.cond_proj(condition) | |
sample = self.linear_1(sample) | |
if self.act is not None: | |
sample = self.act(sample) | |
sample = self.linear_2(sample) | |
if self.post_act is not None: | |
sample = self.post_act(sample) | |
return sample | |
class Timesteps(nn.Module): | |
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1): | |
super().__init__() | |
self.num_channels = num_channels | |
self.flip_sin_to_cos = flip_sin_to_cos | |
self.downscale_freq_shift = downscale_freq_shift | |
self.scale = scale | |
def forward(self, timesteps): | |
t_emb = get_timestep_embedding( | |
timesteps, | |
self.num_channels, | |
flip_sin_to_cos=self.flip_sin_to_cos, | |
downscale_freq_shift=self.downscale_freq_shift, | |
scale=self.scale, | |
) | |
return t_emb | |
class FP32SiLU(nn.Module): | |
r""" | |
SiLU activation function with input upcasted to torch.float32. | |
""" | |
def __init__(self): | |
super().__init__() | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
return F.silu(inputs.float(), inplace=False).to(inputs.dtype) | |
class GELU(nn.Module): | |
r""" | |
GELU activation function with tanh approximation support with `approximate="tanh"`. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
self.approximate = approximate | |
def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
# if gate.device.type == "mps" and is_torch_version("<", "2.0.0"): | |
# # fp16 gelu not supported on mps before torch 2.0 | |
# return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) | |
return F.gelu(gate, approximate=self.approximate) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states = self.gelu(hidden_states) | |
return hidden_states | |
class PixArtAlphaTextProjection(nn.Module): | |
""" | |
Projects caption embeddings. Also handles dropout for classifier-free guidance. | |
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
""" | |
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"): | |
super().__init__() | |
if out_features is None: | |
out_features = hidden_size | |
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) | |
if act_fn == "gelu_tanh": | |
self.act_1 = nn.GELU(approximate="tanh") | |
elif act_fn == "silu": | |
self.act_1 = nn.SiLU() | |
elif act_fn == "silu_fp32": | |
self.act_1 = FP32SiLU() | |
else: | |
raise ValueError(f"Unknown activation function: {act_fn}") | |
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True) | |
def forward(self, caption): | |
hidden_states = self.linear_1(caption) | |
hidden_states = self.act_1(hidden_states) | |
hidden_states = self.linear_2(hidden_states) | |
return hidden_states | |
class LayerNormFramePack(nn.LayerNorm): | |
# casting to dtype of input tensor is added | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x) | |
class FP32LayerNormFramePack(nn.LayerNorm): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
origin_dtype = x.dtype | |
return torch.nn.functional.layer_norm( | |
x.float(), | |
self.normalized_shape, | |
self.weight.float() if self.weight is not None else None, | |
self.bias.float() if self.bias is not None else None, | |
self.eps, | |
).to(origin_dtype) | |
class RMSNormFramePack(nn.Module): | |
r""" | |
RMS Norm as introduced in https://arxiv.org/abs/1910.07467 by Zhang et al. | |
Args: | |
dim (`int`): Number of dimensions to use for `weights`. Only effective when `elementwise_affine` is True. | |
eps (`float`): Small value to use when calculating the reciprocal of the square-root. | |
elementwise_affine (`bool`, defaults to `True`): | |
Boolean flag to denote if affine transformation should be applied. | |
bias (`bool`, defaults to False): If also training the `bias` param. | |
""" | |
def __init__(self, dim, eps: float, elementwise_affine: bool = True, bias: bool = False): | |
super().__init__() | |
self.eps = eps | |
self.elementwise_affine = elementwise_affine | |
if isinstance(dim, numbers.Integral): | |
dim = (dim,) | |
self.dim = torch.Size(dim) | |
self.weight = None | |
self.bias = None | |
if elementwise_affine: | |
self.weight = nn.Parameter(torch.ones(dim)) | |
if bias: | |
self.bias = nn.Parameter(torch.zeros(dim)) | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
if self.weight is None: | |
return hidden_states.to(input_dtype) | |
return hidden_states.to(input_dtype) * self.weight.to(input_dtype) | |
class AdaLayerNormContinuousFramePack(nn.Module): | |
r""" | |
Adaptive normalization layer with a norm layer (layer_norm or rms_norm). | |
Args: | |
embedding_dim (`int`): Embedding dimension to use during projection. | |
conditioning_embedding_dim (`int`): Dimension of the input condition. | |
elementwise_affine (`bool`, defaults to `True`): | |
Boolean flag to denote if affine transformation should be applied. | |
eps (`float`, defaults to 1e-5): Epsilon factor. | |
bias (`bias`, defaults to `True`): Boolean flag to denote if bias should be use. | |
norm_type (`str`, defaults to `"layer_norm"`): | |
Normalization layer to use. Values supported: "layer_norm", "rms_norm". | |
""" | |
def __init__( | |
self, | |
embedding_dim: int, | |
conditioning_embedding_dim: int, | |
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters | |
# because the output is immediately scaled and shifted by the projected conditioning embeddings. | |
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. | |
# However, this is how it was implemented in the original code, and it's rather likely you should | |
# set `elementwise_affine` to False. | |
elementwise_affine=True, | |
eps=1e-5, | |
bias=True, | |
norm_type="layer_norm", | |
): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) | |
if norm_type == "layer_norm": | |
self.norm = LayerNormFramePack(embedding_dim, eps, elementwise_affine, bias) | |
elif norm_type == "rms_norm": | |
self.norm = RMSNormFramePack(embedding_dim, eps, elementwise_affine) | |
else: | |
raise ValueError(f"unknown norm_type {norm_type}") | |
def forward(self, x, conditioning_embedding): | |
emb = self.linear(self.silu(conditioning_embedding)) | |
scale, shift = emb.chunk(2, dim=1) | |
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
return x | |
class LinearActivation(nn.Module): | |
def __init__(self, dim_in: int, dim_out: int, bias: bool = True, activation: str = "silu"): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
self.activation = get_activation(activation) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
return self.activation(hidden_states) | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
# if activation_fn == "gelu": | |
# act_fn = GELU(dim, inner_dim, bias=bias) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
# elif activation_fn == "geglu": | |
# act_fn = GEGLU(dim, inner_dim, bias=bias) | |
# elif activation_fn == "geglu-approximate": | |
# act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
# elif activation_fn == "swiglu": | |
# act_fn = SwiGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "linear-silu": | |
act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu") | |
else: | |
raise ValueError(f"Unknown activation function: {activation_fn}") | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
# deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
# deprecate("scale", "1.0.0", deprecation_message) | |
raise ValueError("scale is not supported in this version. Please remove it.") | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
# @maybe_allow_in_graph | |
class Attention(nn.Module): | |
r""" | |
Minimal copy of Attention class from diffusers. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
bias: bool = False, | |
qk_norm: Optional[str] = None, | |
added_kv_proj_dim: Optional[int] = None, | |
eps: float = 1e-5, | |
processor: Optional[any] = None, | |
out_dim: int = None, | |
context_pre_only=None, | |
pre_only=False, | |
): | |
super().__init__() | |
self.inner_dim = out_dim if out_dim is not None else dim_head * heads | |
self.inner_kv_dim = self.inner_dim # if kv_heads is None else dim_head * kv_heads | |
self.query_dim = query_dim | |
self.use_bias = bias | |
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.out_dim = out_dim if out_dim is not None else query_dim | |
self.out_context_dim = query_dim | |
self.context_pre_only = context_pre_only | |
self.pre_only = pre_only | |
self.scale = dim_head**-0.5 | |
self.heads = out_dim // dim_head if out_dim is not None else heads | |
self.added_kv_proj_dim = added_kv_proj_dim | |
if qk_norm is None: | |
self.norm_q = None | |
self.norm_k = None | |
elif qk_norm == "rms_norm": | |
self.norm_q = RMSNormFramePack(dim_head, eps=eps) | |
self.norm_k = RMSNormFramePack(dim_head, eps=eps) | |
else: | |
raise ValueError( | |
f"unknown qk_norm: {qk_norm}. Should be one of None, 'layer_norm', 'fp32_layer_norm', 'layer_norm_across_heads', 'rms_norm', 'rms_norm_across_heads', 'l2'." | |
) | |
self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) | |
self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) | |
self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) | |
self.added_proj_bias = True # added_proj_bias | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=True) | |
self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=True) | |
if self.context_pre_only is not None: | |
self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=True) | |
else: | |
self.add_q_proj = None | |
self.add_k_proj = None | |
self.add_v_proj = None | |
if not self.pre_only: | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=True)) | |
# self.to_out.append(nn.Dropout(dropout)) | |
self.to_out.append(nn.Identity()) # dropout=0.0 | |
else: | |
self.to_out = None | |
if self.context_pre_only is not None and not self.context_pre_only: | |
self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=True) | |
else: | |
self.to_add_out = None | |
if qk_norm is not None and added_kv_proj_dim is not None: | |
if qk_norm == "rms_norm": | |
self.norm_added_q = RMSNormFramePack(dim_head, eps=eps) | |
self.norm_added_k = RMSNormFramePack(dim_head, eps=eps) | |
else: | |
raise ValueError(f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`") | |
else: | |
self.norm_added_q = None | |
self.norm_added_k = None | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
if processor is None: | |
processor = AttnProcessor2_0() | |
self.set_processor(processor) | |
def set_processor(self, processor: any) -> None: | |
self.processor = processor | |
def get_processor(self) -> any: | |
return self.processor | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
**cross_attention_kwargs, | |
) -> torch.Tensor: | |
return self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
def prepare_attention_mask( | |
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3 | |
) -> torch.Tensor: | |
r""" | |
Prepare the attention mask for the attention computation. | |
Args: | |
attention_mask (`torch.Tensor`): | |
The attention mask to prepare. | |
target_length (`int`): | |
The target length of the attention mask. This is the length of the attention mask after padding. | |
batch_size (`int`): | |
The batch size, which is used to repeat the attention mask. | |
out_dim (`int`, *optional*, defaults to `3`): | |
The output dimension of the attention mask. Can be either `3` or `4`. | |
Returns: | |
`torch.Tensor`: The prepared attention mask. | |
""" | |
head_size = self.heads | |
if attention_mask is None: | |
return attention_mask | |
current_length: int = attention_mask.shape[-1] | |
if current_length != target_length: | |
if attention_mask.device.type == "mps": | |
# HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
# Instead, we can manually construct the padding tensor. | |
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) | |
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat([attention_mask, padding], dim=2) | |
else: | |
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
# we want to instead pad by (0, remaining_length), where remaining_length is: | |
# remaining_length: int = target_length - current_length | |
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
if out_dim == 3: | |
if attention_mask.shape[0] < batch_size * head_size: | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=0, output_size=attention_mask.shape[0] * head_size) | |
elif out_dim == 4: | |
attention_mask = attention_mask.unsqueeze(1) | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=1, output_size=attention_mask.shape[1] * head_size) | |
return attention_mask | |
class AttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
query = attn.to_q(hidden_states) | |
query_dtype = query.dtype # store dtype before potentially deleting query | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False) | |
del query, key, value, attention_mask # free memory | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query_dtype) # use stored dtype | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
return hidden_states | |
# endregion diffusers | |
def pad_for_3d_conv(x, kernel_size): | |
b, c, t, h, w = x.shape | |
pt, ph, pw = kernel_size | |
pad_t = (pt - (t % pt)) % pt | |
pad_h = (ph - (h % ph)) % ph | |
pad_w = (pw - (w % pw)) % pw | |
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode="replicate") | |
def center_down_sample_3d(x, kernel_size): | |
# pt, ph, pw = kernel_size | |
# cp = (pt * ph * pw) // 2 | |
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw) | |
# xc = xp[cp] | |
# return xc | |
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size) | |
def get_cu_seqlens(text_mask, img_len): | |
batch_size = text_mask.shape[0] | |
text_len = text_mask.sum(dim=1) | |
max_len = text_mask.shape[1] + img_len | |
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device=text_mask.device) # ensure device match | |
for i in range(batch_size): | |
s = text_len[i] + img_len | |
s1 = i * max_len + s | |
s2 = (i + 1) * max_len | |
cu_seqlens[2 * i + 1] = s1 | |
cu_seqlens[2 * i + 2] = s2 | |
return cu_seqlens | |
def apply_rotary_emb_transposed(x, freqs_cis): | |
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1) | |
del freqs_cis | |
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1) | |
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) | |
del x_real, x_imag | |
return (x.float() * cos + x_rotated.float() * sin).to(x.dtype) | |
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, attn_mode=None, split_attn=False): | |
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None: | |
if attn_mode == "sageattn" or attn_mode is None and sageattn is not None: | |
x = sageattn(q, k, v, tensor_layout="NHD") | |
return x | |
if attn_mode == "flash" or attn_mode is None and flash_attn_func is not None: | |
x = flash_attn_func(q, k, v) | |
return x | |
if attn_mode == "xformers" or attn_mode is None and xformers_attn_func is not None: | |
x = xformers_attn_func(q, k, v) | |
return x | |
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose( | |
1, 2 | |
) | |
return x | |
if split_attn: | |
if attn_mode == "sageattn" or attn_mode is None and sageattn is not None: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = sageattn(q[i : i + 1], k[i : i + 1], v[i : i + 1], tensor_layout="NHD") | |
return x | |
if attn_mode == "flash" or attn_mode is None and flash_attn_func is not None: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = flash_attn_func(q[i : i + 1], k[i : i + 1], v[i : i + 1]) | |
return x | |
if attn_mode == "xformers" or attn_mode is None and xformers_attn_func is not None: | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = xformers_attn_func(q[i : i + 1], k[i : i + 1], v[i : i + 1]) | |
return x | |
q = q.transpose(1, 2) | |
k = k.transpose(1, 2) | |
v = v.transpose(1, 2) | |
x = torch.empty_like(q) | |
for i in range(q.size(0)): | |
x[i : i + 1] = torch.nn.functional.scaled_dot_product_attention(q[i : i + 1], k[i : i + 1], v[i : i + 1]) | |
x = x.transpose(1, 2) | |
return x | |
batch_size = q.shape[0] | |
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:]) | |
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:]) | |
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:]) | |
if attn_mode == "sageattn" or attn_mode is None and sageattn_varlen is not None: | |
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) | |
del q, k, v # free memory | |
elif attn_mode == "flash" or attn_mode is None and flash_attn_varlen_func is not None: | |
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) | |
del q, k, v # free memory | |
else: | |
raise NotImplementedError("No Attn Installed or batch_size > 1 is not supported in this configuration. Try `--split_attn`.") | |
x = x.view(batch_size, max_seqlen_q, *x.shape[2:]) | |
return x | |
class HunyuanAttnProcessorFlashAttnDouble: | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states, | |
attention_mask, | |
image_rotary_emb, | |
attn_mode: Optional[str] = None, | |
split_attn: Optional[bool] = False, | |
): | |
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask | |
# Project image latents | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
del hidden_states # free memory | |
query = query.unflatten(2, (attn.heads, -1)) | |
key = key.unflatten(2, (attn.heads, -1)) | |
value = value.unflatten(2, (attn.heads, -1)) | |
query = attn.norm_q(query) | |
key = attn.norm_k(key) | |
query = apply_rotary_emb_transposed(query, image_rotary_emb) | |
key = apply_rotary_emb_transposed(key, image_rotary_emb) | |
del image_rotary_emb # free memory | |
# Project context (text/encoder) embeddings | |
encoder_query = attn.add_q_proj(encoder_hidden_states) | |
encoder_key = attn.add_k_proj(encoder_hidden_states) | |
encoder_value = attn.add_v_proj(encoder_hidden_states) | |
txt_length = encoder_hidden_states.shape[1] # store length before deleting | |
del encoder_hidden_states # free memory | |
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)) | |
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)) | |
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)) | |
encoder_query = attn.norm_added_q(encoder_query) | |
encoder_key = attn.norm_added_k(encoder_key) | |
# Concatenate image and context q, k, v | |
query = torch.cat([query, encoder_query], dim=1) | |
key = torch.cat([key, encoder_key], dim=1) | |
value = torch.cat([value, encoder_value], dim=1) | |
del encoder_query, encoder_key, encoder_value # free memory | |
hidden_states_attn = attn_varlen_func( | |
query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, attn_mode=attn_mode, split_attn=split_attn | |
) | |
del query, key, value # free memory | |
hidden_states_attn = hidden_states_attn.flatten(-2) | |
hidden_states, encoder_hidden_states = hidden_states_attn[:, :-txt_length], hidden_states_attn[:, -txt_length:] | |
del hidden_states_attn # free memory | |
# Apply output projections | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) # Dropout/Identity | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
return hidden_states, encoder_hidden_states | |
class HunyuanAttnProcessorFlashAttnSingle: | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states, | |
attention_mask, | |
image_rotary_emb, | |
attn_mode: Optional[str] = None, | |
split_attn: Optional[bool] = False, | |
): | |
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask | |
txt_length = encoder_hidden_states.shape[1] # Store text length | |
# Concatenate image and context inputs | |
hidden_states_cat = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
del hidden_states, encoder_hidden_states # free memory | |
# Project concatenated inputs | |
query = attn.to_q(hidden_states_cat) | |
key = attn.to_k(hidden_states_cat) | |
value = attn.to_v(hidden_states_cat) | |
del hidden_states_cat # free memory | |
query = query.unflatten(2, (attn.heads, -1)) | |
key = key.unflatten(2, (attn.heads, -1)) | |
value = value.unflatten(2, (attn.heads, -1)) | |
query = attn.norm_q(query) | |
key = attn.norm_k(key) | |
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1) | |
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1) | |
del image_rotary_emb # free memory | |
hidden_states = attn_varlen_func( | |
query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, attn_mode=attn_mode, split_attn=split_attn | |
) | |
del query, key, value # free memory | |
hidden_states = hidden_states.flatten(-2) | |
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:] | |
return hidden_states, encoder_hidden_states | |
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module): | |
def __init__(self, embedding_dim, pooled_projection_dim): | |
super().__init__() | |
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") | |
def forward(self, timestep, guidance, pooled_projection): | |
timesteps_proj = self.time_proj(timestep) | |
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) | |
guidance_proj = self.time_proj(guidance) | |
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) | |
time_guidance_emb = timesteps_emb + guidance_emb | |
pooled_projections = self.text_embedder(pooled_projection) | |
conditioning = time_guidance_emb + pooled_projections | |
return conditioning | |
class CombinedTimestepTextProjEmbeddings(nn.Module): | |
def __init__(self, embedding_dim, pooled_projection_dim): | |
super().__init__() | |
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") | |
def forward(self, timestep, pooled_projection): | |
timesteps_proj = self.time_proj(timestep) | |
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) | |
pooled_projections = self.text_embedder(pooled_projection) | |
conditioning = timesteps_emb + pooled_projections | |
return conditioning | |
class HunyuanVideoAdaNorm(nn.Module): | |
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None: | |
super().__init__() | |
out_features = out_features or 2 * in_features | |
self.linear = nn.Linear(in_features, out_features) | |
self.nonlinearity = nn.SiLU() | |
def forward(self, temb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
temb = self.linear(self.nonlinearity(temb)) | |
gate_msa, gate_mlp = temb.chunk(2, dim=-1) | |
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1) | |
return gate_msa, gate_mlp | |
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_width_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
attention_bias: bool = True, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
self.norm1 = LayerNormFramePack(hidden_size, elementwise_affine=True, eps=1e-6) | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
bias=attention_bias, | |
) | |
self.norm2 = LayerNormFramePack(hidden_size, elementwise_affine=True, eps=1e-6) | |
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate) | |
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
norm_hidden_states = self.norm1(hidden_states) | |
# Self-attention | |
attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=attention_mask, | |
) | |
del norm_hidden_states # free memory | |
gate_msa, gate_mlp = self.norm_out(temb) | |
hidden_states = hidden_states + attn_output * gate_msa | |
del attn_output, gate_msa # free memory | |
ff_output = self.ff(self.norm2(hidden_states)) | |
hidden_states = hidden_states + ff_output * gate_mlp | |
del ff_output, gate_mlp # free memory | |
return hidden_states | |
class HunyuanVideoIndividualTokenRefiner(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
num_layers: int, | |
mlp_width_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
attention_bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.refiner_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoIndividualTokenRefinerBlock( | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
attention_bias=attention_bias, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
self_attn_mask = None | |
if attention_mask is not None: | |
batch_size = attention_mask.shape[0] | |
seq_len = attention_mask.shape[1] | |
attention_mask = attention_mask.to(hidden_states.device).bool() | |
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1) | |
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) | |
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() | |
self_attn_mask[:, :, :, 0] = True | |
for block in self.refiner_blocks: | |
hidden_states = block(hidden_states, temb, self_attn_mask) | |
return hidden_states | |
class HunyuanVideoTokenRefiner(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
num_layers: int, | |
mlp_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
attention_bias: bool = True, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
self.time_text_embed = CombinedTimestepTextProjEmbeddings(embedding_dim=hidden_size, pooled_projection_dim=in_channels) | |
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True) | |
self.token_refiner = HunyuanVideoIndividualTokenRefiner( | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
num_layers=num_layers, | |
mlp_width_ratio=mlp_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
attention_bias=attention_bias, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: torch.LongTensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
) -> torch.Tensor: | |
if attention_mask is None: | |
pooled_projections = hidden_states.mean(dim=1) | |
else: | |
original_dtype = hidden_states.dtype | |
mask_float = attention_mask.float().unsqueeze(-1) | |
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1) | |
pooled_projections = pooled_projections.to(original_dtype) | |
temb = self.time_text_embed(timestep, pooled_projections) | |
del pooled_projections # free memory | |
hidden_states = self.proj_in(hidden_states) | |
hidden_states = self.token_refiner(hidden_states, temb, attention_mask) | |
del temb, attention_mask # free memory | |
return hidden_states | |
class HunyuanVideoRotaryPosEmbed(nn.Module): | |
def __init__(self, rope_dim, theta): | |
super().__init__() | |
self.DT, self.DY, self.DX = rope_dim | |
self.theta = theta | |
def get_frequency(self, dim, pos): | |
T, H, W = pos.shape | |
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim)) | |
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0) | |
return freqs.cos(), freqs.sin() | |
def forward_inner(self, frame_indices, height, width, device): | |
GT, GY, GX = torch.meshgrid( | |
frame_indices.to(device=device, dtype=torch.float32), | |
torch.arange(0, height, device=device, dtype=torch.float32), | |
torch.arange(0, width, device=device, dtype=torch.float32), | |
indexing="ij", | |
) | |
FCT, FST = self.get_frequency(self.DT, GT) | |
del GT # free memory | |
FCY, FSY = self.get_frequency(self.DY, GY) | |
del GY # free memory | |
FCX, FSX = self.get_frequency(self.DX, GX) | |
del GX # free memory | |
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0) | |
del FCT, FCY, FCX, FST, FSY, FSX # free memory | |
# Return result already on the correct device | |
return result # Shape (2 * total_dim / 2, T, H, W) -> (total_dim, T, H, W) | |
def forward(self, frame_indices, height, width, device): | |
frame_indices = frame_indices.unbind(0) | |
results = [self.forward_inner(f, height, width, device) for f in frame_indices] | |
results = torch.stack(results, dim=0) | |
return results | |
class AdaLayerNormZero(nn.Module): | |
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) | |
if norm_type == "layer_norm": | |
self.norm = LayerNormFramePack(embedding_dim, elementwise_affine=False, eps=1e-6) | |
else: | |
raise ValueError(f"unknown norm_type {norm_type}") | |
def forward( | |
self, x: torch.Tensor, emb: Optional[torch.Tensor] = None | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
emb = emb.unsqueeze(-2) | |
emb = self.linear(self.silu(emb)) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) | |
x = self.norm(x) * (1 + scale_msa) + shift_msa | |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
class AdaLayerNormZeroSingle(nn.Module): | |
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) | |
if norm_type == "layer_norm": | |
self.norm = LayerNormFramePack(embedding_dim, elementwise_affine=False, eps=1e-6) | |
else: | |
raise ValueError(f"unknown norm_type {norm_type}") | |
def forward( | |
self, | |
x: torch.Tensor, | |
emb: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
emb = emb.unsqueeze(-2) | |
emb = self.linear(self.silu(emb)) | |
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) | |
x = self.norm(x) * (1 + scale_msa) + shift_msa | |
return x, gate_msa | |
class AdaLayerNormContinuous(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
conditioning_embedding_dim: int, | |
elementwise_affine=True, | |
eps=1e-5, | |
bias=True, | |
norm_type="layer_norm", | |
): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) | |
if norm_type == "layer_norm": | |
self.norm = LayerNormFramePack(embedding_dim, eps, elementwise_affine, bias) | |
else: | |
raise ValueError(f"unknown norm_type {norm_type}") | |
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: | |
emb = emb.unsqueeze(-2) | |
emb = self.linear(self.silu(emb)) | |
scale, shift = emb.chunk(2, dim=-1) | |
del emb # free memory | |
x = self.norm(x) * (1 + scale) + shift | |
return x | |
class HunyuanVideoSingleTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_ratio: float = 4.0, | |
qk_norm: str = "rms_norm", | |
attn_mode: Optional[str] = None, | |
split_attn: Optional[bool] = False, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
mlp_dim = int(hidden_size * mlp_ratio) | |
self.attn_mode = attn_mode | |
self.split_attn = split_attn | |
# Attention layer (pre_only=True means no output projection in Attention module itself) | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=hidden_size, | |
bias=True, | |
processor=HunyuanAttnProcessorFlashAttnSingle(), | |
qk_norm=qk_norm, | |
eps=1e-6, | |
pre_only=True, # Crucial: Attn processor will return raw attention output | |
) | |
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") | |
self.proj_mlp = nn.Linear(hidden_size, mlp_dim) | |
self.act_mlp = nn.GELU(approximate="tanh") | |
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
text_seq_length = encoder_hidden_states.shape[1] | |
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) | |
del encoder_hidden_states # free memory | |
residual = hidden_states | |
# 1. Input normalization | |
norm_hidden_states, gate = self.norm(hidden_states, emb=temb) | |
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) | |
norm_hidden_states, norm_encoder_hidden_states = ( | |
norm_hidden_states[:, :-text_seq_length, :], | |
norm_hidden_states[:, -text_seq_length:, :], | |
) | |
# 2. Attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=image_rotary_emb, | |
attn_mode=self.attn_mode, | |
split_attn=self.split_attn, | |
) | |
attn_output = torch.cat([attn_output, context_attn_output], dim=1) | |
del norm_hidden_states, norm_encoder_hidden_states, context_attn_output # free memory | |
del image_rotary_emb | |
# 3. Modulation and residual connection | |
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) | |
del attn_output, mlp_hidden_states # free memory | |
hidden_states = gate * self.proj_out(hidden_states) | |
hidden_states = hidden_states + residual | |
hidden_states, encoder_hidden_states = ( | |
hidden_states[:, :-text_seq_length, :], | |
hidden_states[:, -text_seq_length:, :], | |
) | |
return hidden_states, encoder_hidden_states | |
class HunyuanVideoTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
mlp_ratio: float, | |
qk_norm: str = "rms_norm", | |
attn_mode: Optional[str] = None, | |
split_attn: Optional[bool] = False, | |
) -> None: | |
super().__init__() | |
hidden_size = num_attention_heads * attention_head_dim | |
self.attn_mode = attn_mode | |
self.split_attn = split_attn | |
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") | |
self.attn = Attention( | |
query_dim=hidden_size, | |
cross_attention_dim=None, | |
added_kv_proj_dim=hidden_size, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
out_dim=hidden_size, | |
context_pre_only=False, | |
bias=True, | |
processor=HunyuanAttnProcessorFlashAttnDouble(), | |
qk_norm=qk_norm, | |
eps=1e-6, | |
) | |
self.norm2 = LayerNormFramePack(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
self.norm2_context = LayerNormFramePack(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# 1. Input normalization | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) | |
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( | |
encoder_hidden_states, emb=temb | |
) | |
# 2. Joint attention | |
attn_output, context_attn_output = self.attn( | |
hidden_states=norm_hidden_states, | |
encoder_hidden_states=norm_encoder_hidden_states, | |
attention_mask=attention_mask, | |
image_rotary_emb=freqs_cis, | |
attn_mode=self.attn_mode, | |
split_attn=self.split_attn, | |
) | |
del norm_hidden_states, norm_encoder_hidden_states, freqs_cis # free memory | |
# 3. Modulation and residual connection | |
hidden_states = hidden_states + attn_output * gate_msa | |
del attn_output, gate_msa # free memory | |
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa | |
del context_attn_output, c_gate_msa # free memory | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
del shift_mlp, scale_mlp # free memory | |
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp | |
del c_shift_mlp, c_scale_mlp # free memory | |
# 4. Feed-forward | |
ff_output = self.ff(norm_hidden_states) | |
del norm_hidden_states # free memory | |
context_ff_output = self.ff_context(norm_encoder_hidden_states) | |
del norm_encoder_hidden_states # free memory | |
hidden_states = hidden_states + gate_mlp * ff_output | |
del ff_output, gate_mlp # free memory | |
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output | |
del context_ff_output, c_gate_mlp # free memory | |
return hidden_states, encoder_hidden_states | |
class ClipVisionProjection(nn.Module): | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.up = nn.Linear(in_channels, out_channels * 3) | |
self.down = nn.Linear(out_channels * 3, out_channels) | |
def forward(self, x): | |
projected_x = self.down(nn.functional.silu(self.up(x))) | |
return projected_x | |
class HunyuanVideoPatchEmbed(nn.Module): | |
def __init__(self, patch_size, in_chans, embed_dim): | |
super().__init__() | |
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module): | |
def __init__(self, inner_dim): | |
super().__init__() | |
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2)) | |
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4)) | |
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8)) | |
def initialize_weight_from_another_conv3d(self, another_layer): | |
weight = another_layer.weight.detach().clone() | |
bias = another_layer.bias.detach().clone() | |
sd = { | |
"proj.weight": weight.clone(), | |
"proj.bias": bias.clone(), | |
"proj_2x.weight": einops.repeat(weight, "b c t h w -> b c (t tk) (h hk) (w wk)", tk=2, hk=2, wk=2) / 8.0, | |
"proj_2x.bias": bias.clone(), | |
"proj_4x.weight": einops.repeat(weight, "b c t h w -> b c (t tk) (h hk) (w wk)", tk=4, hk=4, wk=4) / 64.0, | |
"proj_4x.bias": bias.clone(), | |
} | |
sd = {k: v.clone() for k, v in sd.items()} | |
self.load_state_dict(sd) | |
return | |
class HunyuanVideoTransformer3DModelPacked(nn.Module): # (PreTrainedModelMixin, GenerationMixin, | |
# ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): | |
# @register_to_config | |
def __init__( | |
self, | |
in_channels: int = 16, | |
out_channels: int = 16, | |
num_attention_heads: int = 24, | |
attention_head_dim: int = 128, | |
num_layers: int = 20, | |
num_single_layers: int = 40, | |
num_refiner_layers: int = 2, | |
mlp_ratio: float = 4.0, | |
patch_size: int = 2, | |
patch_size_t: int = 1, | |
qk_norm: str = "rms_norm", | |
guidance_embeds: bool = True, | |
text_embed_dim: int = 4096, | |
pooled_projection_dim: int = 768, | |
rope_theta: float = 256.0, | |
rope_axes_dim: Tuple[int] = (16, 56, 56), | |
has_image_proj=False, | |
image_proj_dim=1152, | |
has_clean_x_embedder=False, | |
attn_mode: Optional[str] = None, | |
split_attn: Optional[bool] = False, | |
) -> None: | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
out_channels = out_channels or in_channels | |
self.config_patch_size = patch_size | |
self.config_patch_size_t = patch_size_t | |
# 1. Latent and condition embedders | |
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim) | |
self.context_embedder = HunyuanVideoTokenRefiner( | |
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers | |
) | |
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim) | |
self.clean_x_embedder = None | |
self.image_projection = None | |
# 2. RoPE | |
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta) | |
# 3. Dual stream transformer blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoTransformerBlock( | |
num_attention_heads, | |
attention_head_dim, | |
mlp_ratio=mlp_ratio, | |
qk_norm=qk_norm, | |
attn_mode=attn_mode, | |
split_attn=split_attn, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
# 4. Single stream transformer blocks | |
self.single_transformer_blocks = nn.ModuleList( | |
[ | |
HunyuanVideoSingleTransformerBlock( | |
num_attention_heads, | |
attention_head_dim, | |
mlp_ratio=mlp_ratio, | |
qk_norm=qk_norm, | |
attn_mode=attn_mode, | |
split_attn=split_attn, | |
) | |
for _ in range(num_single_layers) | |
] | |
) | |
# 5. Output projection | |
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels) | |
self.inner_dim = inner_dim | |
self.use_gradient_checkpointing = False | |
self.enable_teacache = False | |
# if has_image_proj: | |
# self.install_image_projection(image_proj_dim) | |
self.image_projection = ClipVisionProjection(in_channels=image_proj_dim, out_channels=self.inner_dim) | |
# self.config["has_image_proj"] = True | |
# self.config["image_proj_dim"] = in_channels | |
# if has_clean_x_embedder: | |
# self.install_clean_x_embedder() | |
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim) | |
# self.config["has_clean_x_embedder"] = True | |
self.high_quality_fp32_output_for_inference = True # False # change default to True | |
# Block swapping attributes (initialized to None) | |
self.blocks_to_swap = None | |
self.offloader_double = None | |
self.offloader_single = None | |
def device(self): | |
return next(self.parameters()).device | |
def dtype(self): | |
return next(self.parameters()).dtype | |
def enable_gradient_checkpointing(self): | |
self.use_gradient_checkpointing = True | |
print("Gradient checkpointing enabled for HunyuanVideoTransformer3DModelPacked.") # Logging | |
def disable_gradient_checkpointing(self): | |
self.use_gradient_checkpointing = False | |
print("Gradient checkpointing disabled for HunyuanVideoTransformer3DModelPacked.") # Logging | |
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15): | |
self.enable_teacache = enable_teacache | |
self.cnt = 0 | |
self.num_steps = num_steps | |
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = None | |
self.previous_residual = None | |
self.teacache_rescale_func = np.poly1d([7.33226126e02, -4.01131952e02, 6.75869174e01, -3.14987800e00, 9.61237896e-02]) | |
if enable_teacache: | |
print(f"TeaCache enabled: num_steps={num_steps}, rel_l1_thresh={rel_l1_thresh}") | |
else: | |
print("TeaCache disabled.") | |
def gradient_checkpointing_method(self, block, *args): | |
if self.use_gradient_checkpointing: | |
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False) | |
else: | |
result = block(*args) | |
return result | |
def enable_block_swap(self, num_blocks: int, device: torch.device, supports_backward: bool): | |
self.blocks_to_swap = num_blocks | |
self.num_double_blocks = len(self.transformer_blocks) | |
self.num_single_blocks = len(self.single_transformer_blocks) | |
double_blocks_to_swap = num_blocks // 2 | |
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2 + 1 | |
assert double_blocks_to_swap <= self.num_double_blocks - 1 and single_blocks_to_swap <= self.num_single_blocks - 1, ( | |
f"Cannot swap more than {self.num_double_blocks - 1} double blocks and {self.num_single_blocks - 1} single blocks. " | |
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks." | |
) | |
self.offloader_double = ModelOffloader( | |
"double", | |
self.transformer_blocks, | |
self.num_double_blocks, | |
double_blocks_to_swap, | |
supports_backward, | |
device, | |
# debug=True # Optional debugging | |
) | |
self.offloader_single = ModelOffloader( | |
"single", | |
self.single_transformer_blocks, | |
self.num_single_blocks, | |
single_blocks_to_swap, | |
supports_backward, | |
device, # , debug=True | |
) | |
print( | |
f"HunyuanVideoTransformer3DModelPacked: Block swap enabled. Swapping {num_blocks} blocks, " | |
+ f"double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}, supports_backward: {supports_backward}." | |
) | |
def switch_block_swap_for_inference(self): | |
if self.blocks_to_swap and self.blocks_to_swap > 0: | |
self.offloader_double.set_forward_only(True) | |
self.offloader_single.set_forward_only(True) | |
self.prepare_block_swap_before_forward() | |
print(f"HunyuanVideoTransformer3DModelPacked: Block swap set to forward only.") | |
def switch_block_swap_for_training(self): | |
if self.blocks_to_swap and self.blocks_to_swap > 0: | |
self.offloader_double.set_forward_only(False) | |
self.offloader_single.set_forward_only(False) | |
self.prepare_block_swap_before_forward() | |
print(f"HunyuanVideoTransformer3DModelPacked: Block swap set to forward and backward.") | |
def move_to_device_except_swap_blocks(self, device: torch.device): | |
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage | |
if self.blocks_to_swap: | |
saved_double_blocks = self.transformer_blocks | |
saved_single_blocks = self.single_transformer_blocks | |
self.transformer_blocks = None | |
self.single_transformer_blocks = None | |
self.to(device) | |
if self.blocks_to_swap: | |
self.transformer_blocks = saved_double_blocks | |
self.single_transformer_blocks = saved_single_blocks | |
def prepare_block_swap_before_forward(self): | |
if self.blocks_to_swap is None or self.blocks_to_swap == 0: | |
return | |
self.offloader_double.prepare_block_devices_before_forward(self.transformer_blocks) | |
self.offloader_single.prepare_block_devices_before_forward(self.single_transformer_blocks) | |
def process_input_hidden_states( | |
self, | |
latents, | |
latent_indices=None, | |
clean_latents=None, | |
clean_latent_indices=None, | |
clean_latents_2x=None, | |
clean_latent_2x_indices=None, | |
clean_latents_4x=None, | |
clean_latent_4x_indices=None, | |
): | |
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents) | |
B, C, T, H, W = hidden_states.shape | |
if latent_indices is None: | |
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1) | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device) | |
rope_freqs = rope_freqs.flatten(2).transpose(1, 2) | |
if clean_latents is not None and clean_latent_indices is not None: | |
clean_latents = clean_latents.to(hidden_states) | |
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents) | |
clean_latents = clean_latents.flatten(2).transpose(1, 2) | |
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device) | |
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2) | |
hidden_states = torch.cat([clean_latents, hidden_states], dim=1) | |
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1) | |
if clean_latents_2x is not None and clean_latent_2x_indices is not None: | |
clean_latents_2x = clean_latents_2x.to(hidden_states) | |
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4)) | |
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x) | |
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2) | |
clean_latent_2x_rope_freqs = self.rope( | |
frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device | |
) | |
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2)) | |
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2)) | |
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2) | |
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1) | |
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1) | |
if clean_latents_4x is not None and clean_latent_4x_indices is not None: | |
clean_latents_4x = clean_latents_4x.to(hidden_states) | |
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8)) | |
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x) | |
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2) | |
clean_latent_4x_rope_freqs = self.rope( | |
frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device | |
) | |
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4)) | |
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4)) | |
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2) | |
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1) | |
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1) | |
return hidden_states, rope_freqs | |
def forward( | |
self, | |
hidden_states, | |
timestep, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
pooled_projections, | |
guidance, | |
latent_indices=None, | |
clean_latents=None, | |
clean_latent_indices=None, | |
clean_latents_2x=None, | |
clean_latent_2x_indices=None, | |
clean_latents_4x=None, | |
clean_latent_4x_indices=None, | |
image_embeddings=None, | |
attention_kwargs=None, | |
return_dict=True, | |
): | |
if attention_kwargs is None: | |
attention_kwargs = {} | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
p, p_t = self.config_patch_size, self.config_patch_size_t | |
post_patch_num_frames = num_frames // p_t | |
post_patch_height = height // p | |
post_patch_width = width // p | |
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width | |
hidden_states, rope_freqs = self.process_input_hidden_states( | |
hidden_states, | |
latent_indices, | |
clean_latents, | |
clean_latent_indices, | |
clean_latents_2x, | |
clean_latent_2x_indices, | |
clean_latents_4x, | |
clean_latent_4x_indices, | |
) | |
del ( | |
latent_indices, | |
clean_latents, | |
clean_latent_indices, | |
clean_latents_2x, | |
clean_latent_2x_indices, | |
clean_latents_4x, | |
clean_latent_4x_indices, | |
) # free memory | |
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections) | |
encoder_hidden_states = self.gradient_checkpointing_method( | |
self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask | |
) | |
if self.image_projection is not None: | |
assert image_embeddings is not None, "You must use image embeddings!" | |
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings) | |
extra_attention_mask = torch.ones( | |
(batch_size, extra_encoder_hidden_states.shape[1]), | |
dtype=encoder_attention_mask.dtype, | |
device=encoder_attention_mask.device, | |
) | |
# must cat before (not after) encoder_hidden_states, due to attn masking | |
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1) | |
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1) | |
del extra_encoder_hidden_states, extra_attention_mask # free memory | |
with torch.no_grad(): | |
if batch_size == 1: | |
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want | |
# If they are not same, then their impls are wrong. Ours are always the correct one. | |
text_len = encoder_attention_mask.sum().item() | |
encoder_hidden_states = encoder_hidden_states[:, :text_len] | |
attention_mask = None, None, None, None | |
else: | |
img_seq_len = hidden_states.shape[1] | |
txt_seq_len = encoder_hidden_states.shape[1] | |
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len) | |
cu_seqlens_kv = cu_seqlens_q | |
max_seqlen_q = img_seq_len + txt_seq_len | |
max_seqlen_kv = max_seqlen_q | |
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv | |
del cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv # free memory | |
del encoder_attention_mask # free memory | |
if self.enable_teacache: | |
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0] | |
if self.cnt == 0 or self.cnt == self.num_steps - 1: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
# Ensure both tensors are on the same device before comparison | |
prev_input = self.previous_modulated_input.to(modulated_inp.device) | |
curr_rel_l1 = ( | |
((modulated_inp - prev_input).abs().mean() / prev_input.abs().mean()) | |
.cpu() | |
.item() | |
) | |
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1) | |
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh | |
if should_calc: | |
self.accumulated_rel_l1_distance = 0 | |
# Explicitly store the tensor on the current device | |
self.previous_modulated_input = modulated_inp.detach().clone() | |
self.cnt += 1 | |
if self.cnt == self.num_steps: | |
self.cnt = 0 | |
if not should_calc: | |
# Ensure residual is on the same device as hidden_states | |
hidden_states = hidden_states + self.previous_residual.to(hidden_states.device) | |
else: | |
ori_hidden_states = hidden_states.clone() | |
# --- BEFORE --- | |
# for block_id, block in enumerate(self.transformer_blocks): | |
# hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( | |
# block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs | |
# ) | |
# | |
# for block_id, block in enumerate(self.single_transformer_blocks): | |
# hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( | |
# block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs | |
# ) | |
# --- AFTER --- | |
for block_id, block in enumerate(self.transformer_blocks): | |
if self.blocks_to_swap: # Add block swap logic here | |
self.offloader_double.wait_for_block(block_id) | |
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( | |
block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs | |
) | |
if self.blocks_to_swap: # Add block swap logic here | |
self.offloader_double.submit_move_blocks_forward(self.transformer_blocks, block_id) | |
for block_id, block in enumerate(self.single_transformer_blocks): | |
if self.blocks_to_swap: # Add block swap logic here | |
self.offloader_single.wait_for_block(block_id) | |
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( | |
block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs | |
) | |
if self.blocks_to_swap: # Add block swap logic here | |
self.offloader_single.submit_move_blocks_forward(self.single_transformer_blocks, block_id) | |
# --- END MODIFICATION --- | |
# Store residual on the same device | |
self.previous_residual = (hidden_states - ori_hidden_states).detach().clone() | |
del ori_hidden_states | |
else: | |
for block_id, block in enumerate(self.transformer_blocks): | |
if self.blocks_to_swap: | |
self.offloader_double.wait_for_block(block_id) | |
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( | |
block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs | |
) | |
if self.blocks_to_swap: | |
self.offloader_double.submit_move_blocks_forward(self.transformer_blocks, block_id) | |
for block_id, block in enumerate(self.single_transformer_blocks): | |
if self.blocks_to_swap: | |
self.offloader_single.wait_for_block(block_id) | |
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method( | |
block, hidden_states, encoder_hidden_states, temb, attention_mask, rope_freqs | |
) | |
if self.blocks_to_swap: | |
self.offloader_single.submit_move_blocks_forward(self.single_transformer_blocks, block_id) | |
del attention_mask, rope_freqs # free memory | |
del encoder_hidden_states # free memory | |
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb) | |
hidden_states = hidden_states[:, -original_context_length:, :] | |
if self.high_quality_fp32_output_for_inference: | |
hidden_states = hidden_states.to(dtype=torch.float32) | |
if self.proj_out.weight.dtype != torch.float32: | |
self.proj_out.to(dtype=torch.float32) | |
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states) | |
hidden_states = einops.rearrange( | |
hidden_states, | |
"b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)", | |
t=post_patch_num_frames, | |
h=post_patch_height, | |
w=post_patch_width, | |
pt=p_t, | |
ph=p, | |
pw=p, | |
) | |
if return_dict: | |
# return Transformer2DModelOutput(sample=hidden_states) | |
return SimpleNamespace(sample=hidden_states) | |
return (hidden_states,) | |
def fp8_optimization( | |
self, state_dict: dict[str, torch.Tensor], device: torch.device, move_to_device: bool, use_scaled_mm: bool = False | |
) -> dict[str, torch.Tensor]: # Return type hint added | |
""" | |
Optimize the model state_dict with fp8. | |
Args: | |
state_dict (dict[str, torch.Tensor]): | |
The state_dict of the model. | |
device (torch.device): | |
The device to calculate the weight. | |
move_to_device (bool): | |
Whether to move the weight to the device after optimization. | |
use_scaled_mm (bool): | |
Whether to use scaled matrix multiplication for FP8. | |
""" | |
TARGET_KEYS = ["transformer_blocks", "single_transformer_blocks"] | |
EXCLUDE_KEYS = ["norm"] # Exclude norm layers (e.g., LayerNorm, RMSNorm) from FP8 | |
# inplace optimization | |
state_dict = optimize_state_dict_with_fp8(state_dict, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device) | |
# apply monkey patching | |
apply_fp8_monkey_patch(self, state_dict, use_scaled_mm=use_scaled_mm) | |
return state_dict | |
def create_hunyuan_video_transformer_3d_model(attn_mode: str, split_attn: bool = False) -> HunyuanVideoTransformer3DModelPacked: | |
with init_empty_weights(): | |
logger.info(f"Creating HunyuanVideoTransformer3DModelPacked") | |
model = HunyuanVideoTransformer3DModelPacked( | |
attention_head_dim=128, | |
guidance_embeds=True, | |
has_clean_x_embedder=True, | |
has_image_proj=True, | |
image_proj_dim=1152, | |
in_channels=16, | |
mlp_ratio=4.0, | |
num_attention_heads=24, | |
num_layers=20, | |
num_refiner_layers=2, | |
num_single_layers=40, | |
out_channels=16, | |
patch_size=2, | |
patch_size_t=1, | |
pooled_projection_dim=768, | |
qk_norm="rms_norm", | |
rope_axes_dim=(16, 56, 56), | |
rope_theta=256.0, | |
text_embed_dim=4096, | |
attn_mode=attn_mode, | |
split_attn=split_attn, | |
) | |
return model | |
def load_packed_model( | |
device: Union[str, torch.device], | |
dit_path: str, | |
attn_mode: str, | |
loading_device: Union[str, torch.device], | |
fp8_scaled: bool = False, | |
split_attn: bool = False, | |
) -> HunyuanVideoTransformer3DModelPacked: | |
# TODO support split_attn | |
device = torch.device(device) | |
loading_device = torch.device(loading_device) | |
if os.path.isdir(dit_path): | |
# we don't support from_pretrained for now, so loading safetensors directly | |
safetensor_files = glob.glob(os.path.join(dit_path, "*.safetensors")) | |
if len(safetensor_files) == 0: | |
raise ValueError(f"Cannot find safetensors file in {dit_path}") | |
# sort by name and take the first one | |
safetensor_files.sort() | |
dit_path = safetensor_files[0] | |
model = create_hunyuan_video_transformer_3d_model(attn_mode, split_attn=split_attn) | |
# if fp8_scaled, load model weights to CPU to reduce VRAM usage. Otherwise, load to the specified device (CPU for block swap or CUDA for others) | |
dit_loading_device = torch.device("cpu") if fp8_scaled else loading_device | |
logger.info(f"Loading DiT model from {dit_path}, device={dit_loading_device}") | |
# load model weights with the specified dtype or as is | |
sd = load_split_weights(dit_path, device=dit_loading_device, disable_mmap=True) | |
if fp8_scaled: | |
# fp8 optimization: calculate on CUDA, move back to CPU if loading_device is CPU (block swap) | |
logger.info(f"Optimizing model weights to fp8. This may take a while.") | |
sd = model.fp8_optimization(sd, device, move_to_device=loading_device.type == "cpu") | |
if loading_device.type != "cpu": | |
# make sure all the model weights are on the loading_device | |
logger.info(f"Moving weights to {loading_device}") | |
for key in sd.keys(): | |
sd[key] = sd[key].to(loading_device) | |
info = model.load_state_dict(sd, strict=True, assign=True) | |
logger.info(f"Loaded DiT model from {dit_path}, info={info}") | |
return model | |