Framepack-H111 / f1_video_cli_local.py
rahul7star's picture
Upload 303 files
e0336bc verified
import os
import torch
import traceback
import einops
import numpy as np
import argparse
import math
import decord
from tqdm import tqdm
import pathlib
from datetime import datetime
import imageio_ffmpeg
import tempfile
import shutil
import subprocess
import sys
from PIL import Image
# --- Imports from fpack_generate_video.py's ecosystem ---
from frame_pack.hunyuan_video_packed import load_packed_model
from frame_pack.framepack_utils import (
load_vae,
load_text_encoder1,
load_text_encoder2,
load_image_encoders
)
from frame_pack.hunyuan import encode_prompt_conds, vae_decode, vae_encode
from frame_pack.utils import crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.bucket_tools import find_nearest_bucket
from diffusers_helper.utils import save_bcthw_as_mp4
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, \
move_model_to_device_with_memory_preservation, \
offload_model_from_device_for_memory_preservation, \
fake_diffusers_current_device, DynamicSwapInstaller, \
unload_complete_models, load_model_as_complete
from networks import lora_framepack
try:
from lycoris.kohya import create_network_from_weights
except ImportError:
pass
from base_wan_generate_video import merge_lora_weights
# --- Global Model Variables ---
text_encoder = None
text_encoder_2 = None
tokenizer = None
tokenizer_2 = None
vae = None
feature_extractor = None
image_encoder = None
transformer = None
high_vram = False
free_mem_gb = 0.0
outputs_folder = './outputs/' # Default, can be overridden by --output_dir
@torch.no_grad()
def image_encode(image_np, target_width, target_height, vae_model, image_encoder_model, feature_extractor_model, device="cuda"):
global high_vram
print("Processing single image for encoding (e.g., start_guidance_image)...")
try:
print(f"Using target resolution for image encoding: {target_width}x{target_height}")
processed_image_np = resize_and_center_crop(image_np, target_width=target_width, target_height=target_height)
image_pt = torch.from_numpy(processed_image_np).float() / 127.5 - 1.0
image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
target_vae_device = device
if not high_vram: load_model_as_complete(vae_model, target_device=target_vae_device)
else: vae_model.to(target_vae_device)
image_pt_device = image_pt.to(target_vae_device)
latent = vae_encode(image_pt_device, vae_model).cpu()
print(f"Single image VAE output shape (latent): {latent.shape}")
if not high_vram: unload_complete_models(vae_model)
target_img_enc_device = device
if not high_vram: load_model_as_complete(image_encoder_model, target_device=target_img_enc_device)
else: image_encoder_model.to(target_img_enc_device)
clip_embedding_output = hf_clip_vision_encode(processed_image_np, feature_extractor_model, image_encoder_model)
clip_embedding = clip_embedding_output.last_hidden_state.cpu()
print(f"Single image CLIP embedding shape: {clip_embedding.shape}")
if not high_vram: unload_complete_models(image_encoder_model)
if device == "cuda":
torch.cuda.empty_cache()
return latent, clip_embedding
except Exception as e:
print(f"Error in image_encode: {str(e)}")
traceback.print_exc()
raise
@torch.no_grad()
def video_encode(video_path, resolution, no_resize, vae_model, vae_batch_size=16, device="cuda", width=None, height=None):
video_path = str(pathlib.Path(video_path).resolve())
print(f"Processing video for encoding: {video_path}")
if device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available, falling back to CPU for video_encode")
device = "cpu"
try:
print("Initializing VideoReader...")
vr = decord.VideoReader(video_path)
fps = vr.get_avg_fps()
if fps == 0:
print("Warning: VideoReader reported FPS as 0. Attempting to get it via OpenCV.")
import cv2
cap = cv2.VideoCapture(video_path)
fps_cv = cap.get(cv2.CAP_PROP_FPS)
cap.release()
if fps_cv > 0:
fps = fps_cv
print(f"Using FPS from OpenCV: {fps}")
else:
raise ValueError("Failed to determine FPS for the input video.")
num_real_frames = len(vr)
print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
latent_size_factor = 4
num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
if num_frames != num_real_frames:
print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
if num_frames == 0:
raise ValueError(f"Video too short ({num_real_frames} frames) or becomes 0 after truncation. Needs at least {latent_size_factor} frames.")
num_real_frames = num_frames
print("Reading video frames...")
frames_np_all = vr.get_batch(range(num_real_frames)).asnumpy()
print(f"Frames read: {frames_np_all.shape}")
native_height, native_width = frames_np_all.shape[1], frames_np_all.shape[2]
print(f"Native video resolution: {native_width}x{native_height}")
target_h_arg = native_height if height is None else height
target_w_arg = native_width if width is None else width
if not no_resize:
actual_target_height, actual_target_width = find_nearest_bucket(target_h_arg, target_w_arg, resolution=resolution)
print(f"Adjusted resolution for VAE encoding: {actual_target_width}x{actual_target_height}")
else:
actual_target_width = (native_width // 8) * 8
actual_target_height = (native_height // 8) * 8
if actual_target_width != native_width or actual_target_height != native_height:
print(f"Using native resolution, adjusted to be divisible by 8: {actual_target_width}x{actual_target_height}")
else:
print(f"Using native resolution without resizing: {actual_target_width}x{actual_target_height}")
processed_frames_list = []
for frame_idx in range(frames_np_all.shape[0]):
frame = frames_np_all[frame_idx]
frame_resized_np = resize_and_center_crop(frame, target_width=actual_target_width, target_height=actual_target_height)
processed_frames_list.append(frame_resized_np)
processed_frames_np_stack = np.stack(processed_frames_list)
print(f"Frames preprocessed: {processed_frames_np_stack.shape}")
input_image_np_for_clip = processed_frames_np_stack[0]
print("Converting frames to tensor...")
frames_pt = torch.from_numpy(processed_frames_np_stack).float() / 127.5 - 1.0
frames_pt = frames_pt.permute(0, 3, 1, 2)
frames_pt = frames_pt.unsqueeze(0).permute(0, 2, 1, 3, 4)
print(f"Tensor shape for VAE: {frames_pt.shape}")
input_video_pixels_cpu = frames_pt.clone().cpu()
print(f"Moving VAE and tensor to device: {device}")
vae_model.to(device)
frames_pt = frames_pt.to(device)
print(f"Encoding input video frames with VAE (batch size: {vae_batch_size})")
all_latents_list = []
vae_model.eval()
with torch.no_grad():
for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="VAE Encoding Video Frames", mininterval=0.1):
batch_frames_pt = frames_pt[:, :, i:i + vae_batch_size]
try:
batch_latents = vae_encode(batch_frames_pt, vae_model)
all_latents_list.append(batch_latents.cpu())
except RuntimeError as e:
print(f"Error during VAE encoding: {str(e)}")
if "out of memory" in str(e).lower() and device == "cuda":
print("CUDA out of memory during VAE encoding. Try reducing --vae_batch_size or use CPU for VAE.")
raise
history_latents_cpu = torch.cat(all_latents_list, dim=2)
print(f"History latents shape (original video): {history_latents_cpu.shape}")
start_latent_cpu = history_latents_cpu[:, :, :1].clone()
print(f"Start latent shape (for conditioning): {start_latent_cpu.shape}")
if device == "cuda":
vae_model.to(cpu)
torch.cuda.empty_cache()
print("VAE moved back to CPU, CUDA cache cleared")
return start_latent_cpu, input_image_np_for_clip, history_latents_cpu, fps, actual_target_height, actual_target_width, input_video_pixels_cpu
except Exception as e:
print(f"Error in video_encode: {str(e)}")
traceback.print_exc()
raise
def set_mp4_comments_imageio_ffmpeg(input_file, comments):
try:
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
if not os.path.exists(input_file):
print(f"Error: Input file {input_file} does not exist")
return False
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
command = [
ffmpeg_path, '-i', input_file, '-metadata', f'comment={comments}',
'-c:v', 'copy', '-c:a', 'copy', '-y', temp_file
]
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=False)
if result.returncode == 0:
shutil.move(temp_file, input_file)
print(f"Successfully added comments to {input_file}")
return True
else:
if os.path.exists(temp_file): os.remove(temp_file)
print(f"Error: FFmpeg failed with message:\n{result.stderr}")
return False
except Exception as e:
if 'temp_file' in locals() and os.path.exists(temp_file): os.remove(temp_file)
print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
return False
@torch.no_grad()
def do_extension_work(
input_video_path, prompt, n_prompt, seed,
resolution_max_dim,
additional_second_length,
latent_window_size, steps, cfg, gs, rs,
gpu_memory_preservation, use_teacache, no_resize, mp4_crf,
num_clean_frames, vae_batch_size,
extension_only
):
global high_vram, text_encoder, text_encoder_2, tokenizer, tokenizer_2, vae, feature_extractor, image_encoder, transformer, args
print('--- Starting Video Extension Work (with optional Start Guidance Image) ---')
try:
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
print('Text encoding for extension...')
target_text_enc_device = str(gpu if torch.cuda.is_available() else cpu)
if not high_vram:
if text_encoder: fake_diffusers_current_device(text_encoder, target_text_enc_device)
if text_encoder_2: load_model_as_complete(text_encoder_2, target_device=target_text_enc_device)
else:
if text_encoder: text_encoder.to(target_text_enc_device)
if text_encoder_2: text_encoder_2.to(target_text_enc_device)
llama_vec_gpu, clip_l_pooler_gpu = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1.0:
llama_vec_n_gpu, clip_l_pooler_n_gpu = torch.zeros_like(llama_vec_gpu), torch.zeros_like(clip_l_pooler_gpu)
else:
llama_vec_n_gpu, clip_l_pooler_n_gpu = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec_padded_cpu, llama_attention_mask_cpu = crop_or_pad_yield_mask(llama_vec_gpu.cpu(), length=512)
llama_vec_n_padded_cpu, llama_attention_mask_n_cpu = crop_or_pad_yield_mask(llama_vec_n_gpu.cpu(), length=512)
clip_l_pooler_cpu = clip_l_pooler_gpu.cpu()
clip_l_pooler_n_cpu = clip_l_pooler_n_gpu.cpu()
if not high_vram: unload_complete_models(text_encoder_2)
print('Encoding input video for extension base...')
video_encode_device = str(gpu if torch.cuda.is_available() else cpu)
start_latent_input_video_cpu, input_image_np_for_clip, video_latents_history_cpu, fps, height, width, _ = video_encode(
input_video_path, resolution_max_dim, no_resize, vae, vae_batch_size=vae_batch_size, device=video_encode_device
)
if fps <= 0:
raise ValueError("FPS from input video is 0 or invalid. Cannot proceed with extension.")
guidance_latent_cpu = None
guidance_clip_embedding_cpu = None
if args.start_guidance_image:
print(f"Encoding provided start guidance image from: {args.start_guidance_image}")
try:
guidance_pil = Image.open(args.start_guidance_image).convert("RGB")
guidance_np = np.array(guidance_pil)
guidance_latent_cpu, guidance_clip_embedding_cpu = image_encode(
guidance_np, target_width=width, target_height=height,
vae_model=vae, image_encoder_model=image_encoder,
feature_extractor_model=feature_extractor, device=video_encode_device
)
print("Start guidance image encoded successfully.")
except Exception as e_img_enc:
print(f"Warning: Could not encode start_guidance_image: {e_img_enc}. Proceeding without it.")
guidance_latent_cpu = None
guidance_clip_embedding_cpu = None
print('CLIP Vision encoding for input video (first frame)...')
target_img_enc_device = str(gpu if torch.cuda.is_available() else cpu)
image_encoder_was_already_on_gpu = False
if image_encoder is not None and hasattr(image_encoder, 'device') and image_encoder.device.type == 'cuda':
image_encoder_was_already_on_gpu = True
if not image_encoder_was_already_on_gpu:
if not high_vram:
if image_encoder: load_model_as_complete(image_encoder, target_device=target_img_enc_device)
else:
if image_encoder: image_encoder.to(target_img_enc_device)
input_video_first_frame_clip_output = hf_clip_vision_encode(input_image_np_for_clip, feature_extractor, image_encoder)
input_video_first_frame_clip_embedding_cpu = input_video_first_frame_clip_output.last_hidden_state.cpu()
final_clip_embedding_for_sampling_cpu = input_video_first_frame_clip_embedding_cpu.clone()
if guidance_clip_embedding_cpu is not None and args.start_guidance_image_clip_weight > 0:
print(f"Blending input video's first frame CLIP with guidance image CLIP (weight: {args.start_guidance_image_clip_weight})")
final_clip_embedding_for_sampling_cpu = \
(1.0 - args.start_guidance_image_clip_weight) * input_video_first_frame_clip_embedding_cpu + \
args.start_guidance_image_clip_weight * guidance_clip_embedding_cpu
elif guidance_clip_embedding_cpu is not None and args.start_guidance_image_clip_weight == 0:
print("Guidance image provided, but weight is 0. Using input video's first frame CLIP only.")
else:
print("Using input video's first frame CLIP embedding for image conditioning (no guidance image or weight is 0).")
if not image_encoder_was_already_on_gpu:
if not high_vram and image_encoder: unload_complete_models(image_encoder)
target_transformer_device = str(gpu if torch.cuda.is_available() else cpu)
if not high_vram:
if transformer: move_model_to_device_with_memory_preservation(transformer, target_device=target_transformer_device, preserved_memory_gb=gpu_memory_preservation)
else:
if transformer: transformer.to(target_transformer_device)
cond_device = transformer.device
cond_dtype = transformer.dtype
llama_vec = llama_vec_padded_cpu.to(device=cond_device, dtype=cond_dtype)
llama_attention_mask = llama_attention_mask_cpu.to(device=cond_device)
llama_vec_n = llama_vec_n_padded_cpu.to(device=cond_device, dtype=cond_dtype)
llama_attention_mask_n = llama_attention_mask_n_cpu.to(device=cond_device)
clip_l_pooler = clip_l_pooler_cpu.to(device=cond_device, dtype=cond_dtype)
clip_l_pooler_n = clip_l_pooler_n_cpu.to(device=cond_device, dtype=cond_dtype)
image_embeddings_for_sampling_loop = final_clip_embedding_for_sampling_cpu.to(device=cond_device, dtype=cond_dtype)
start_latent_from_input_video_gpu = start_latent_input_video_cpu.to(device=cond_device, dtype=torch.float32)
num_output_pixel_frames_per_section = latent_window_size * 4
if num_output_pixel_frames_per_section == 0:
raise ValueError("latent_window_size * 4 is zero, cannot calculate total_extension_latent_sections.")
total_extension_latent_sections = int(max(round((additional_second_length * fps) / num_output_pixel_frames_per_section), 1))
print(f"Input video FPS: {fps}, Target additional length: {additional_second_length}s")
print(f"Generating {total_extension_latent_sections} new sections for extension (approx {total_extension_latent_sections * num_output_pixel_frames_per_section / fps:.2f}s).")
job_id_base = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + \
f"_framepackf1-vidEXT_{width}x{height}_{additional_second_length:.1f}s_seed{seed}_s{steps}_gs{gs}_cfg{cfg}"
job_id = job_id_base
if extension_only:
job_id += "_extonly"
print("Extension-only mode enabled. Filenames will reflect this.")
rnd = torch.Generator("cpu").manual_seed(seed)
history_latents_combined_cpu = video_latents_history_cpu.clone()
print("Decoding original input video content for appending...")
target_vae_device_for_initial_decode = str(gpu if torch.cuda.is_available() else cpu)
if not high_vram:
if vae: load_model_as_complete(vae, target_device=target_vae_device_for_initial_decode)
else:
if vae: vae.to(target_vae_device_for_initial_decode)
initial_video_pixels_cpu = vae_decode(video_latents_history_cpu.to(target_vae_device_for_initial_decode), vae).cpu()
if extension_only:
history_pixels_decoded_cpu = None
print("Extension only mode: Intermediate and final videos will contain only the generated extension.")
else:
history_pixels_decoded_cpu = initial_video_pixels_cpu.clone()
print("Normal mode: Intermediate and final videos will contain input video + extension.")
if not high_vram and vae: unload_complete_models(vae)
total_current_pixel_frames_count = history_pixels_decoded_cpu.shape[2] if history_pixels_decoded_cpu is not None else 0
previous_video_path_for_cleanup = None
initial_guidance_clip_weight = args.start_guidance_image_clip_weight
num_guidance_fade_sections = min(3, total_extension_latent_sections)
for section_index in range(total_extension_latent_sections):
print(f"--- F1 Extension: Seed {seed}: Section {section_index + 1}/{total_extension_latent_sections} ---")
if transformer: transformer.initialize_teacache(enable_teacache=use_teacache, num_steps=steps if use_teacache else 0)
progress_bar_sampler = tqdm(total=steps, desc=f"Sampling Extension Section {section_index+1}/{total_extension_latent_sections}", file=sys.stdout)
def sampler_callback_cli(d):
progress_bar_sampler.update(1)
available_latents_count_cpu = history_latents_combined_cpu.shape[2]
pixel_frames_to_generate_this_step = latent_window_size * 4 - 3
adjusted_latent_frames_for_output = (pixel_frames_to_generate_this_step + 3) // 4
base_effective_clean_frames = max(0, args.num_clean_frames -1) if args.num_clean_frames > 1 else 0
effective_clean_frames_count_section = base_effective_clean_frames
effective_clean_frames_count_section = min(effective_clean_frames_count_section, max(0, available_latents_count_cpu - 1 - (2 if available_latents_count_cpu > 3 else 0) ))
num_2x_frames_count_section = min(2, max(0, available_latents_count_cpu - effective_clean_frames_count_section -1))
num_4x_frames_count_section = min(16, max(0, available_latents_count_cpu - effective_clean_frames_count_section - num_2x_frames_count_section -1))
if section_index == 0 and args.use_guidance_image_as_first_latent and guidance_latent_cpu is not None:
print("First section with guidance VAE: Forcing 0 historical clean/2x/4x frames from input video.")
effective_clean_frames_count_section = 0
num_2x_frames_count_section = 0
num_4x_frames_count_section = 0
print(f"Section {section_index+1}: Effective Context Counts: 1x={effective_clean_frames_count_section}, 2x={num_2x_frames_count_section}, 4x={num_4x_frames_count_section}")
total_context_latents_count = num_4x_frames_count_section + num_2x_frames_count_section + effective_clean_frames_count_section
total_context_latents_count = min(total_context_latents_count, available_latents_count_cpu)
indices_tensor_gpu = torch.arange(0, sum([
1,
num_4x_frames_count_section,
num_2x_frames_count_section,
effective_clean_frames_count_section,
adjusted_latent_frames_for_output
])).unsqueeze(0).to(cond_device)
clean_latent_indices_start_gpu, \
clean_latent_4x_indices_gpu, \
clean_latent_2x_indices_gpu, \
clean_latent_1x_indices_gpu, \
latent_indices_for_denoising_gpu = indices_tensor_gpu.split(
[1, num_4x_frames_count_section, num_2x_frames_count_section, effective_clean_frames_count_section, adjusted_latent_frames_for_output], dim=1
)
clean_latent_indices_combined_gpu = torch.cat([clean_latent_indices_start_gpu, clean_latent_1x_indices_gpu], dim=1)
context_latents_for_split_cpu = history_latents_combined_cpu[:, :, -total_context_latents_count:, :, :] if total_context_latents_count > 0 else torch.empty((1,history_latents_combined_cpu.shape[1],0,height//8,width//8), dtype=torch.float32)
clean_latents_4x_gpu_data = torch.empty((1,history_latents_combined_cpu.shape[1],0,height//8,width//8), device=cond_device, dtype=torch.float32)
clean_latents_2x_gpu_data = torch.empty((1,history_latents_combined_cpu.shape[1],0,height//8,width//8), device=cond_device, dtype=torch.float32)
clean_latents_1x_gpu_data = torch.empty((1,history_latents_combined_cpu.shape[1],0,height//8,width//8), device=cond_device, dtype=torch.float32)
current_offset_in_context_cpu = 0
if num_4x_frames_count_section > 0 and total_context_latents_count > 0 and current_offset_in_context_cpu < context_latents_for_split_cpu.shape[2]:
slice_end = min(current_offset_in_context_cpu + num_4x_frames_count_section, context_latents_for_split_cpu.shape[2])
clean_latents_4x_gpu_data = context_latents_for_split_cpu[:, :, current_offset_in_context_cpu:slice_end].to(device=cond_device, dtype=torch.float32)
current_offset_in_context_cpu += clean_latents_4x_gpu_data.shape[2]
if num_2x_frames_count_section > 0 and total_context_latents_count > 0 and current_offset_in_context_cpu < context_latents_for_split_cpu.shape[2]:
slice_end = min(current_offset_in_context_cpu + num_2x_frames_count_section, context_latents_for_split_cpu.shape[2])
clean_latents_2x_gpu_data = context_latents_for_split_cpu[:, :, current_offset_in_context_cpu:slice_end].to(device=cond_device, dtype=torch.float32)
current_offset_in_context_cpu += clean_latents_2x_gpu_data.shape[2]
if effective_clean_frames_count_section > 0 and total_context_latents_count > 0 and current_offset_in_context_cpu < context_latents_for_split_cpu.shape[2]:
slice_end = min(current_offset_in_context_cpu + effective_clean_frames_count_section, context_latents_for_split_cpu.shape[2])
clean_latents_1x_gpu_data = context_latents_for_split_cpu[:, :, current_offset_in_context_cpu:slice_end].to(device=cond_device, dtype=torch.float32)
actual_start_latent_for_clean_latents_gpu = start_latent_from_input_video_gpu
if section_index == 0 and args.use_guidance_image_as_first_latent and guidance_latent_cpu is not None:
print("Using guidance image VAE latent as the start_latent for the first generated segment.")
actual_start_latent_for_clean_latents_gpu = guidance_latent_cpu.to(device=cond_device, dtype=torch.float32)
elif section_index == 0:
print("Using input video's first VAE latent as start_latent for first generated segment.")
clean_latents_for_sampler_gpu = torch.cat([actual_start_latent_for_clean_latents_gpu, clean_latents_1x_gpu_data], dim=2)
current_guidance_clip_weight = 0.0
if guidance_clip_embedding_cpu is not None and initial_guidance_clip_weight > 0:
if section_index < num_guidance_fade_sections:
current_guidance_clip_weight = initial_guidance_clip_weight * (1.0 - (section_index / float(num_guidance_fade_sections)))
print(f"Section {section_index+1}: Current guidance CLIP weight: {current_guidance_clip_weight:.2f}")
else:
current_guidance_clip_weight = 0.0
print(f"Section {section_index+1}: Guidance CLIP weight faded to 0.")
if current_guidance_clip_weight > 0 and guidance_clip_embedding_cpu is not None :
current_image_embeddings_for_sampling_cpu = \
(1.0 - current_guidance_clip_weight) * input_video_first_frame_clip_embedding_cpu + \
current_guidance_clip_weight * guidance_clip_embedding_cpu
else:
current_image_embeddings_for_sampling_cpu = input_video_first_frame_clip_embedding_cpu.clone()
current_image_embeddings_for_sampling_gpu = current_image_embeddings_for_sampling_cpu.to(device=cond_device, dtype=cond_dtype)
generated_latents_gpu_step = sample_hunyuan(
transformer=transformer, sampler='unipc', width=width, height=height,
frames=pixel_frames_to_generate_this_step,
real_guidance_scale=cfg, distilled_guidance_scale=gs, guidance_rescale=rs,
num_inference_steps=steps, generator=rnd,
prompt_embeds=llama_vec, prompt_embeds_mask=llama_attention_mask, prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n, negative_prompt_embeds_mask=llama_attention_mask_n, negative_prompt_poolers=clip_l_pooler_n,
device=cond_device, dtype=cond_dtype,
image_embeddings=current_image_embeddings_for_sampling_gpu,
latent_indices=latent_indices_for_denoising_gpu,
clean_latents=clean_latents_for_sampler_gpu,
clean_latent_indices=clean_latent_indices_combined_gpu,
clean_latents_2x=clean_latents_2x_gpu_data if num_2x_frames_count_section > 0 else None,
clean_latent_2x_indices=clean_latent_2x_indices_gpu if num_2x_frames_count_section > 0 else None,
clean_latents_4x=clean_latents_4x_gpu_data if num_4x_frames_count_section > 0 else None,
clean_latent_4x_indices=clean_latent_4x_indices_gpu if num_4x_frames_count_section > 0 else None,
callback=sampler_callback_cli,
)
if progress_bar_sampler: progress_bar_sampler.close()
history_latents_combined_cpu = torch.cat([history_latents_combined_cpu, generated_latents_gpu_step.cpu()], dim=2)
target_vae_device = str(gpu if torch.cuda.is_available() else cpu)
if not high_vram:
if transformer: offload_model_from_device_for_memory_preservation(transformer, target_device=target_transformer_device, preserved_memory_gb=gpu_memory_preservation)
if vae: load_model_as_complete(vae, target_device=target_vae_device)
else:
if vae: vae.to(target_vae_device)
num_latents_for_stitch_decode = latent_window_size * 2
num_latents_for_stitch_decode = min(num_latents_for_stitch_decode, history_latents_combined_cpu.shape[2])
latents_for_current_part_decode_gpu = history_latents_combined_cpu[:, :, -num_latents_for_stitch_decode:].to(target_vae_device)
pixels_for_current_part_decoded_cpu = vae_decode(
latents_for_current_part_decode_gpu,
vae
).cpu()
if extension_only and history_pixels_decoded_cpu is None:
history_pixels_decoded_cpu = pixels_for_current_part_decoded_cpu
else:
overlap_for_soft_append = latent_window_size * 4 - 3
overlap_for_soft_append = min(overlap_for_soft_append, history_pixels_decoded_cpu.shape[2], pixels_for_current_part_decoded_cpu.shape[2])
if overlap_for_soft_append <= 0:
history_pixels_decoded_cpu = torch.cat([history_pixels_decoded_cpu, pixels_for_current_part_decoded_cpu], dim=2)
else:
history_pixels_decoded_cpu = soft_append_bcthw(
history_pixels_decoded_cpu,
pixels_for_current_part_decoded_cpu,
overlap=overlap_for_soft_append
)
total_current_pixel_frames_count = history_pixels_decoded_cpu.shape[2]
if not high_vram:
if vae: unload_complete_models(vae)
if transformer and not (section_index == total_extension_latent_sections - 1):
move_model_to_device_with_memory_preservation(transformer, target_device=target_transformer_device, preserved_memory_gb=gpu_memory_preservation)
current_output_filename = os.path.join(outputs_folder, f'{job_id}_part{section_index + 1}_totalframes{history_pixels_decoded_cpu.shape[2]}.mp4')
save_bcthw_as_mp4(history_pixels_decoded_cpu, current_output_filename, fps=fps, crf=mp4_crf)
print(f"MP4 Preview for section {section_index + 1} saved: {current_output_filename}")
set_mp4_comments_imageio_ffmpeg(current_output_filename, f"Prompt: {prompt} | Neg: {n_prompt} | Seed: {seed}");
if previous_video_path_for_cleanup is not None and os.path.exists(previous_video_path_for_cleanup):
try:
os.remove(previous_video_path_for_cleanup)
print(f"Cleaned up previous part: {previous_video_path_for_cleanup}")
except Exception as e_del:
print(f"Error deleting previous partial video {previous_video_path_for_cleanup}: {e_del}")
previous_video_path_for_cleanup = current_output_filename
final_video_path_for_item = previous_video_path_for_cleanup
if extension_only:
print(f"Final extension-only video for seed {seed} saved as: {final_video_path_for_item}")
else:
print(f"Final video for seed {seed} (extension) saved as: {final_video_path_for_item}")
except Exception as e_outer:
traceback.print_exc()
print(f"Error during extension generation: {e_outer}")
finally:
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
print("--- Extension work cycle finished. ---")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="FramePack F1 Video Extension CLI")
parser.add_argument('--input_video', type=str, required=True, help='Path to the input video file for extension.')
parser.add_argument('--prompt', type=str, required=True, help='Prompt for video generation.')
parser.add_argument('--n_prompt', type=str, default="", help='Negative prompt.')
parser.add_argument('--seed', type=int, default=31337, help='Seed for generation.')
parser.add_argument('--resolution_max_dim', type=int, default=640, help='Target resolution (max width or height for bucket search).')
parser.add_argument('--total_second_length', type=float, default=5.0, help='Additional video length to generate (seconds).')
parser.add_argument('--latent_window_size', type=int, default=9, help='Latent window size (frames).')
parser.add_argument('--steps', type=int, default=25, help='Number of inference steps.')
parser.add_argument('--cfg', type=float, default=1.0, help='CFG Scale (Classifier Free Guidance).')
parser.add_argument('--gs', type=float, default=3.0, help='Distilled CFG Scale (Embedded CFG).')
parser.add_argument('--rs', type=float, default=0.0, help='CFG Re-Scale (usually 0.0).')
parser.add_argument('--gpu_memory_preservation', type=float, default=6.0, help='GPU memory to preserve (GB) for low VRAM mode.')
parser.add_argument('--use_teacache', action='store_true', default=False, help='Enable TeaCache.')
parser.add_argument('--no_resize', action='store_true', default=False, help='Force original video resolution for input video encoding.')
parser.add_argument('--mp4_crf', type=int, default=16, help='MP4 CRF value (0-51, lower is better quality).')
parser.add_argument('--num_clean_frames', type=int, default=5, help='Number of 1x context frames from input video history for DiT conditioning.')
parser.add_argument('--vae_batch_size', type=int, default=-1, help='VAE batch size for input video encoding. Default: auto based on VRAM.')
parser.add_argument('--output_dir', type=str, default='./outputs/', help="Directory to save output videos.")
parser.add_argument('--dit', type=str, required=True, help="Path to local DiT model weights file or directory.")
parser.add_argument('--vae', type=str, required=True, help="Path to local VAE model weights file or directory.")
parser.add_argument('--text_encoder1', type=str, required=True, help="Path to Text Encoder 1 (Llama) WEIGHT FILE.")
parser.add_argument('--text_encoder2', type=str, required=True, help="Path to Text Encoder 2 (CLIP) WEIGHT FILE.")
parser.add_argument('--image_encoder', type=str, required=True, help="Path to Image Encoder (SigLIP) WEIGHT FILE.")
parser.add_argument('--attn_mode', type=str, default="torch", help="Attention mode for DiT.")
parser.add_argument('--fp8_llm', action='store_true', help="Use fp8 for Text Encoder 1 (Llama).")
parser.add_argument("--vae_chunk_size", type=int, default=None, help="Chunk size for CausalConv3d in VAE.")
parser.add_argument("--vae_spatial_tile_sample_min_size", type=int, default=None, help="Spatial tile sample min size for VAE.")
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path(s).")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=[1.0], help="LoRA multiplier(s).")
parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns.")
parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns.")
parser.add_argument('--extension_only', action='store_true', help="Save only the extension video without the input video attached.")
parser.add_argument('--start_guidance_image', type=str, default=None,
help='Optional path to an image to guide the start of the generated extension.')
parser.add_argument('--start_guidance_image_clip_weight', type=float, default=0.75,
help='Weight for the start_guidance_image CLIP embedding (0.0 to 1.0). Default 0.75. Blends with input video\'s first frame CLIP.')
parser.add_argument('--use_guidance_image_as_first_latent', action='store_true', default=False,
help='If true, use the VAE latent of the start_guidance_image as the initial conditioning latent for the first generated segment.')
args = parser.parse_args()
current_device_str = str(gpu if torch.cuda.is_available() else cpu)
args.device = current_device_str
for model_arg_name in ['dit', 'vae', 'text_encoder1', 'text_encoder2', 'image_encoder']:
path_val = getattr(args, model_arg_name)
if not os.path.exists(path_val):
parser.error(f"Path for --{model_arg_name} not found: {path_val}")
outputs_folder = args.output_dir
os.makedirs(outputs_folder, exist_ok=True)
print(f"Outputting extensions to: {outputs_folder}")
free_mem_gb = get_cuda_free_memory_gb(gpu if torch.cuda.is_available() else None)
high_vram = free_mem_gb > 100
print(f'Free VRAM {free_mem_gb:.2f} GB. High-VRAM Mode: {high_vram}')
if args.vae_batch_size == -1:
if free_mem_gb >= 18: args.vae_batch_size = 64
elif free_mem_gb >= 10: args.vae_batch_size = 32
else: args.vae_batch_size = 16
print(f"Auto-set VAE batch size to: {args.vae_batch_size}")
print("Loading models for extension...")
loading_device_str = str(cpu)
transformer = load_packed_model(
device=loading_device_str,
dit_path=args.dit,
attn_mode=args.attn_mode,
loading_device=loading_device_str
)
print("DiT loaded.")
if args.lora_weight is not None and len(args.lora_weight) > 0:
print("Merging LoRA weights for extension...")
if len(args.lora_multiplier) == 1 and len(args.lora_weight) > 1:
args.lora_multiplier = args.lora_multiplier * len(args.lora_weight)
elif len(args.lora_multiplier) != len(args.lora_weight):
parser.error(f"Number of LoRA weights ({len(args.lora_weight)}) and multipliers ({len(args.lora_multiplier)}) must match, or provide a single multiplier.")
try:
if not hasattr(args, 'lycoris'):
args.lycoris = False
if not hasattr(args, 'save_merged_model'):
args.save_merged_model = None
current_device_for_lora = torch.device(loading_device_str)
merge_lora_weights(
lora_framepack,
transformer,
args,
current_device_for_lora
)
print("LoRA weights merged successfully using the same call structure as fpack_generate_video.py.")
except Exception as e_lora:
print(f"Error merging LoRA weights: {e_lora}")
traceback.print_exc()
vae = load_vae(
vae_path=args.vae,
vae_chunk_size=args.vae_chunk_size,
vae_spatial_tile_sample_min_size=args.vae_spatial_tile_sample_min_size,
device=loading_device_str
)
print("VAE loaded.")
tokenizer, text_encoder = load_text_encoder1(args, device=loading_device_str)
print("Text Encoder 1 and Tokenizer 1 loaded.")
tokenizer_2, text_encoder_2 = load_text_encoder2(args)
print("Text Encoder 2 and Tokenizer 2 loaded.")
feature_extractor, image_encoder = load_image_encoders(args)
print("Image Encoder and Feature Extractor loaded.")
all_models_list = [transformer, vae, text_encoder, text_encoder_2, image_encoder]
for model_obj in all_models_list:
if model_obj is not None:
model_obj.eval().requires_grad_(False)
if transformer: transformer.to(dtype=torch.bfloat16)
if vae: vae.to(dtype=torch.float16)
if image_encoder: image_encoder.to(dtype=torch.float16)
if text_encoder: text_encoder.to(dtype=torch.float16)
if text_encoder_2: text_encoder_2.to(dtype=torch.float16)
if transformer:
transformer.high_quality_fp32_output_for_inference = True
print('Transformer: high_quality_fp32_output_for_inference = True')
if vae and not high_vram:
vae.enable_slicing()
vae.enable_tiling()
target_gpu_device_str = str(gpu if torch.cuda.is_available() else cpu)
if not high_vram and torch.cuda.is_available():
print("Low VRAM mode: Setting up dynamic swapping for DiT and Text Encoder 1.")
if transformer: DynamicSwapInstaller.install_model(transformer, device=target_gpu_device_str)
if text_encoder: DynamicSwapInstaller.install_model(text_encoder, device=target_gpu_device_str)
if vae: vae.to(cpu)
if text_encoder_2: text_encoder_2.to(cpu)
if image_encoder: image_encoder.to(cpu)
elif torch.cuda.is_available():
print(f"High VRAM mode: Moving all models to {target_gpu_device_str}.")
for model_obj in all_models_list:
if model_obj is not None: model_obj.to(target_gpu_device_str)
else:
print("Running on CPU. Models remain on CPU.")
print("All models loaded and configured for extension.")
actual_gs_cli = args.gs
if args.cfg > 1.0:
actual_gs_cli = 1.0
print(f"CFG > 1.0 detected ({args.cfg}), overriding GS to 1.0 from {args.gs}.")
do_extension_work(
input_video_path=args.input_video,
prompt=args.prompt,
n_prompt=args.n_prompt,
seed=args.seed,
resolution_max_dim=args.resolution_max_dim,
additional_second_length=args.total_second_length,
latent_window_size=args.latent_window_size,
steps=args.steps,
cfg=args.cfg,
gs=actual_gs_cli,
rs=args.rs,
gpu_memory_preservation=args.gpu_memory_preservation,
use_teacache=args.use_teacache,
no_resize=args.no_resize,
mp4_crf=args.mp4_crf,
num_clean_frames=args.num_clean_frames,
vae_batch_size=args.vae_batch_size,
extension_only=args.extension_only
)
print("Video extension process completed.")