Framepack-H111 / extendvideo.py
rahul7star's picture
Upload 303 files
e0336bc verified
import argparse
from datetime import datetime
import gc
import random
import os
import re
import time
import math
from typing import Tuple, Optional, List, Union, Any
from pathlib import Path # Added for glob_images in V2V
import torch
import accelerate
from accelerate import Accelerator
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2 # Added for V2V video loading/resizing
import numpy as np # Added for V2V video processing
import torchvision.transforms.functional as TF
from tqdm import tqdm
from networks import lora_wan
from utils.safetensors_utils import mem_eff_save_file, load_safetensors
from wan.configs import WAN_CONFIGS, SUPPORTED_SIZES
import wan
from wan.modules.model import WanModel, load_wan_model, detect_wan_sd_dtype
from wan.modules.vae import WanVAE
from wan.modules.t5 import T5EncoderModel
from wan.modules.clip import CLIPModel
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
from wan.utils.fm_solvers import FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.model_utils import str_to_dtype
from utils.device_utils import clean_memory_on_device
# Original load_video/load_images are still needed for Fun-Control / image loading
from hv_generate_video import save_images_grid, save_videos_grid, synchronize_device, load_images as hv_load_images, load_video as hv_load_video
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def parse_args() -> argparse.Namespace:
"""parse command line arguments"""
parser = argparse.ArgumentParser(description="Wan 2.1 inference script")
# WAN arguments
parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
parser.add_argument("--task", type=str, default="t2v-14B", choices=list(WAN_CONFIGS.keys()), help="The task to run.")
parser.add_argument(
"--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
)
parser.add_argument("--dit", type=str, default=None, help="DiT checkpoint path")
parser.add_argument("--vae", type=str, default=None, help="VAE checkpoint path")
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is bfloat16")
parser.add_argument("--vae_cache_cpu", action="store_true", help="cache features in VAE on CPU")
parser.add_argument("--t5", type=str, default=None, help="text encoder (T5) checkpoint path")
parser.add_argument("--clip", type=str, default=None, help="text encoder (CLIP) checkpoint path")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
# inference
parser.add_argument("--prompt", type=str, required=True, help="prompt for generation (describe the continuation for extension)")
parser.add_argument(
"--negative_prompt",
type=str,
default=None,
help="negative prompt for generation, use default negative prompt if not specified",
)
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
parser.add_argument("--video_length", type=int, default=None, help="Total video length (input+generated) for diffusion processing. Default depends on task/mode.")
parser.add_argument("--fps", type=int, default=16, help="video fps, Default is 16")
parser.add_argument("--infer_steps", type=int, default=None, help="number of inference steps")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
parser.add_argument(
"--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
)
parser.add_argument(
"--guidance_scale",
type=float,
default=5.0,
help="Guidance scale for classifier free guidance. Default is 5.0.",
)
# Modes (mutually exclusive)
parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference (standard Wan V2V)")
parser.add_argument("--image_path", type=str, default=None, help="path to image for image2video inference")
parser.add_argument("--extend_video", type=str, default=None, help="path to video for extending it using initial frames")
# Mode specific args
parser.add_argument("--strength", type=float, default=0.75, help="Strength for video2video inference (0.0-1.0)")
parser.add_argument("--end_image_path", type=str, default=None, help="path to end image for image2video or extension inference")
parser.add_argument("--num_input_frames", type=int, default=4, help="Number of frames from start of --extend_video to use as input (min 1)")
parser.add_argument("--extend_length", type=int, default=None, help="Number of frames to generate *after* the input frames for --extend_video. Default makes total length match task default (e.g., 81).")
# Fun-Control argument (distinct from V2V/I2V/Extend)
parser.add_argument(
"--control_strength",
type=float,
default=1.0,
help="Strength of control video influence for Fun-Control (1.0 = normal)",
)
parser.add_argument(
"--control_path",
type=str,
default=None,
help="path to control video for inference with controlnet (Fun-Control model only). video file or directory with images",
)
parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")
parser.add_argument(
"--cfg_skip_mode",
type=str,
default="none",
choices=["early", "late", "middle", "early_late", "alternate", "none"],
help="CFG skip mode. each mode skips different parts of the CFG. "
" early: initial steps, late: later steps, middle: middle steps, early_late: both early and late, alternate: alternate, none: no skip (default)",
)
parser.add_argument(
"--cfg_apply_ratio",
type=float,
default=None,
help="The ratio of steps to apply CFG (0.0 to 1.0). Default is None (apply all steps).",
)
parser.add_argument(
"--slg_layers", type=str, default=None, help="Skip block (layer) indices for SLG (Skip Layer Guidance), comma separated"
)
parser.add_argument(
"--slg_scale",
type=float,
default=3.0,
help="scale for SLG classifier free guidance. Default is 3.0. Ignored if slg_mode is None or uncond",
)
parser.add_argument("--slg_start", type=float, default=0.0, help="start ratio for inference steps for SLG. Default is 0.0.")
parser.add_argument("--slg_end", type=float, default=0.3, help="end ratio for inference steps for SLG. Default is 0.3.")
parser.add_argument(
"--slg_mode",
type=str,
default=None,
choices=["original", "uncond"],
help="SLG mode. original: same as SD3, uncond: replace uncond pred with SLG pred",
)
# Flow Matching
parser.add_argument(
"--flow_shift",
type=float,
default=None,
help="Shift factor for flow matching schedulers. Default depends on task.",
)
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled")
parser.add_argument("--fp8_t5", action="store_true", help="use fp8 for Text Encoder model")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode",
type=str,
default="torch",
choices=["flash", "flash2", "flash3", "torch", "sageattn", "xformers", "sdpa"],
help="attention mode",
)
parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
parser.add_argument(
"--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
parser.add_argument(
"--compile_args",
nargs=4,
metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
help="Torch.compile settings",
)
args = parser.parse_args()
assert (args.latent_path is None or len(args.latent_path) == 0) or (
args.output_type == "images" or args.output_type == "video"
), "latent_path is only supported for images or video output"
# --- Mode Exclusivity Checks ---
modes = [args.video_path, args.image_path, args.extend_video, args.control_path]
num_modes_set = sum(1 for mode in modes if mode is not None)
if num_modes_set > 1:
active_modes = []
if args.video_path: active_modes.append("--video_path (V2V)")
if args.image_path: active_modes.append("--image_path (I2V)")
if args.extend_video: active_modes.append("--extend_video (Extend)")
if args.control_path: active_modes.append("--control_path (Fun-Control)")
# Allow Fun-Control + another mode conceptually, but the script logic needs adjustment
if not (num_modes_set == 2 and args.control_path is not None):
raise ValueError(f"Only one operation mode can be specified. Found: {', '.join(active_modes)}")
# Special case: Fun-Control can technically be combined, but let's check task compatibility
if args.control_path is not None and not WAN_CONFIGS[args.task].is_fun_control:
raise ValueError("--control_path is provided, but the selected task does not support Fun-Control.")
# --- Specific Mode Validations ---
if args.extend_video is not None:
if args.num_input_frames < 1:
raise ValueError("--num_input_frames must be at least 1 for video extension.")
if "t2v" in args.task:
logger.warning("--extend_video provided, but task is t2v. Using I2V-like conditioning.")
# We'll set video_length later based on num_input_frames and extend_length
if args.image_path is not None:
logger.warning("--image_path is provided. This is standard single-frame I2V.")
if "t2v" in args.task:
logger.warning("--image_path provided, but task is t2v. Using I2V conditioning.")
if args.video_path is not None:
logger.info("Running in V2V mode.")
# V2V length is determined later if not specified
if args.control_path is not None and not WAN_CONFIGS[args.task].is_fun_control:
raise ValueError("--control_path is provided, but the selected task does not support Fun-Control.")
return args
def get_task_defaults(task: str, size: Optional[Tuple[int, int]] = None, is_extend_mode: bool = False) -> Tuple[int, float, int, bool]:
"""Return default values for each task
Args:
task: task name (t2v, t2i, i2v etc.)
size: size of the video (width, height)
is_extend_mode: whether we are in video extension mode
Returns:
Tuple[int, float, int, bool]: (infer_steps, flow_shift, video_length, needs_clip)
"""
width, height = size if size else (0, 0)
# I2V and Extend mode share similar defaults
is_i2v_like = "i2v" in task or is_extend_mode
if "t2i" in task:
return 50, 5.0, 1, False
elif is_i2v_like:
flow_shift = 3.0 if (width == 832 and height == 480) or (width == 480 and height == 832) else 5.0
return 40, flow_shift, 81, True # Default total length 81
else: # t2v or default
return 50, 5.0, 81, False # Default total length 81
def setup_args(args: argparse.Namespace) -> argparse.Namespace:
"""Validate and set default values for optional arguments
Args:
args: command line arguments
Returns:
argparse.Namespace: updated arguments
"""
is_extend_mode = args.extend_video is not None
# Get default values for the task
default_infer_steps, default_flow_shift, default_video_length, _ = get_task_defaults(args.task, tuple(args.video_size), is_extend_mode)
# Apply default values to unset arguments
if args.infer_steps is None:
args.infer_steps = default_infer_steps
if args.flow_shift is None:
args.flow_shift = default_flow_shift
# --- Video Length Handling ---
if is_extend_mode:
if args.extend_length is None:
# Calculate extend_length to reach the default total length
args.extend_length = max(1, default_video_length - args.num_input_frames)
logger.info(f"Defaulting --extend_length to {args.extend_length} to reach total length {default_video_length}")
# Set the total video_length for processing
args.video_length = args.num_input_frames + args.extend_length
if args.video_length <= args.num_input_frames:
raise ValueError(f"Total video length ({args.video_length}) must be greater than input frames ({args.num_input_frames}). Increase --extend_length.")
elif args.video_length is None and args.video_path is None: # T2V, I2V (not extend)
args.video_length = default_video_length
elif args.video_length is None and args.video_path is not None: # V2V auto-detect
pass # Delay setting default if V2V and length not specified
elif args.video_length is not None: # User specified length
pass
# Force video_length to 1 for t2i tasks
if "t2i" in task:
assert args.video_length == 1, f"video_length should be 1 for task {args.task}"
# parse slg_layers
if args.slg_layers is not None:
args.slg_layers = list(map(int, args.slg_layers.split(",")))
return args
def check_inputs(args: argparse.Namespace) -> Tuple[int, int, Optional[int]]:
"""Validate video size and potentially length (if not V2V auto-detect)
Args:
args: command line arguments
Returns:
Tuple[int, int, Optional[int]]: (height, width, video_length)
"""
height = args.video_size[0]
width = args.video_size[1]
size = f"{width}*{height}"
is_extend_mode = args.extend_video is not None
is_v2v_mode = args.video_path is not None
# Check supported sizes unless it's V2V/Extend (input video dictates size) or FunControl
if not is_v2v_mode and not is_extend_mode and not WAN_CONFIGS[args.task].is_fun_control:
if size not in SUPPORTED_SIZES[args.task]:
logger.warning(f"Size {size} is not supported for task {args.task}. Supported sizes are {SUPPORTED_SIZES[args.task]}.")
video_length = args.video_length # Might be None if V2V auto-detect
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_length
def calculate_dimensions(video_size: Tuple[int, int], video_length: int, config) -> Tuple[Tuple[int, int, int, int], int]:
"""calculate dimensions for the generation
Args:
video_size: video frame size (height, width)
video_length: number of frames in the video being processed
config: model configuration
Returns:
Tuple[Tuple[int, int, int, int], int]:
((channels, frames, height, width), seq_len)
"""
height, width = video_size
frames = video_length
# calculate latent space dimensions
lat_f = (frames - 1) // config.vae_stride[0] + 1
lat_h = height // config.vae_stride[1]
lat_w = width // config.vae_stride[2]
# calculate sequence length
seq_len = math.ceil((lat_h * lat_w) / (config.patch_size[1] * config.patch_size[2]) * lat_f)
return ((16, lat_f, lat_h, lat_w), seq_len)
# Modified function (replace the original)
def load_vae(args: argparse.Namespace, config, device: torch.device, dtype: torch.dtype) -> WanVAE:
"""load VAE model with robust path handling
Args:
args: command line arguments
config: model configuration
device: device to use
dtype: data type for the model
Returns:
WanVAE: loaded VAE model
"""
vae_override_path = args.vae
vae_filename = config.vae_checkpoint # Get expected filename, e.g., "Wan2.1_VAE.pth"
# Assume models are in 'wan' dir relative to script if not otherwise specified
vae_base_dir = "wan"
final_vae_path = None
# 1. Check if args.vae is a valid *existing file path*
if vae_override_path and isinstance(vae_override_path, str) and \
(vae_override_path.endswith(".pth") or vae_override_path.endswith(".safetensors")) and \
os.path.isfile(vae_override_path):
final_vae_path = vae_override_path
logger.info(f"Using VAE override path from --vae: {final_vae_path}")
# 2. If override is invalid or not provided, construct default path
if final_vae_path is None:
constructed_path = os.path.join(vae_base_dir, vae_filename)
if os.path.isfile(constructed_path):
final_vae_path = constructed_path
logger.info(f"Constructed default VAE path: {final_vae_path}")
if vae_override_path:
logger.warning(f"Ignoring potentially invalid --vae argument: {vae_override_path}")
else:
# 3. Fallback using ckpt_dir if provided and default construction failed
if args.ckpt_dir:
fallback_path = os.path.join(args.ckpt_dir, vae_filename)
if os.path.isfile(fallback_path):
final_vae_path = fallback_path
logger.info(f"Using VAE path from --ckpt_dir fallback: {final_vae_path}")
else:
# If all attempts fail, raise error
raise FileNotFoundError(f"Cannot find VAE. Checked override '{vae_override_path}', constructed '{constructed_path}', and fallback '{fallback_path}'")
else:
raise FileNotFoundError(f"Cannot find VAE. Checked override '{vae_override_path}' and constructed '{constructed_path}'. No --ckpt_dir provided for fallback.")
# At this point, final_vae_path should be valid
logger.info(f"Loading VAE model from final path: {final_vae_path}")
cache_device = torch.device("cpu") if args.vae_cache_cpu else None
vae = WanVAE(vae_path=final_vae_path, device=device, dtype=dtype, cache_device=cache_device)
return vae
def load_text_encoder(args: argparse.Namespace, config, device: torch.device) -> T5EncoderModel:
"""load text encoder (T5) model
Args:
args: command line arguments
config: model configuration
device: device to use
Returns:
T5EncoderModel: loaded text encoder model
"""
checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_checkpoint)
tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.t5_tokenizer)
text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=device,
checkpoint_path=checkpoint_path,
tokenizer_path=tokenizer_path,
weight_path=args.t5,
fp8=args.fp8_t5,
)
return text_encoder
def load_clip_model(args: argparse.Namespace, config, device: torch.device) -> CLIPModel:
"""load CLIP model (for I2V / Extend only)
Args:
args: command line arguments
config: model configuration
device: device to use
Returns:
CLIPModel: loaded CLIP model
"""
checkpoint_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_checkpoint)
tokenizer_path = None if args.ckpt_dir is None else os.path.join(args.ckpt_dir, config.clip_tokenizer)
clip = CLIPModel(
dtype=config.clip_dtype,
device=device,
checkpoint_path=checkpoint_path,
tokenizer_path=tokenizer_path,
weight_path=args.clip,
)
return clip
def load_dit_model(
args: argparse.Namespace,
config,
device: torch.device,
dit_dtype: torch.dtype,
dit_weight_dtype: Optional[torch.dtype] = None,
is_i2v_like: bool = False, # Combined flag for I2V and Extend modes
) -> WanModel:
"""load DiT model
Args:
args: command line arguments
config: model configuration
device: device to use
dit_dtype: data type for the model
dit_weight_dtype: data type for the model weights. None for as-is
is_i2v_like: I2V or Extend mode (might affect some model config details)
Returns:
WanModel: loaded DiT model
"""
loading_device = "cpu"
if args.blocks_to_swap == 0 and args.lora_weight is None and not args.fp8_scaled:
loading_device = device
loading_weight_dtype = dit_weight_dtype
if args.fp8_scaled or args.lora_weight is not None:
loading_weight_dtype = dit_dtype # load as-is
# do not fp8 optimize because we will merge LoRA weights
# Pass the is_i2v_like flag if the underlying loading function uses it
model = load_wan_model(config, device, args.dit, args.attn_mode, False, loading_device, loading_weight_dtype, is_i2v_like)
return model
def merge_lora_weights(model: WanModel, args: argparse.Namespace, device: torch.device) -> None:
"""merge LoRA weights to the model
Args:
model: DiT model
args: command line arguments
device: device to use
"""
if args.lora_weight is None or len(args.lora_weight) == 0:
return
for i, lora_weight in enumerate(args.lora_weight):
if args.lora_multiplier is not None and len(args.lora_multiplier) > i:
lora_multiplier = args.lora_multiplier[i]
else:
lora_multiplier = 1.0
logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}")
weights_sd = load_file(lora_weight)
# apply include/exclude patterns
original_key_count = len(weights_sd.keys())
if args.include_patterns is not None and len(args.include_patterns) > i:
include_pattern = args.include_patterns[i]
regex_include = re.compile(include_pattern)
weights_sd = {k: v for k, v in weights_sd.items() if regex_include.search(k)}
logger.info(f"Filtered keys with include pattern {include_pattern}: {original_key_count} -> {len(weights_sd.keys())}")
if args.exclude_patterns is not None and len(args.exclude_patterns) > i:
original_key_count_ex = len(weights_sd.keys())
exclude_pattern = args.exclude_patterns[i]
regex_exclude = re.compile(exclude_pattern)
weights_sd = {k: v for k, v in weights_sd.items() if not regex_exclude.search(k)}
logger.info(
f"Filtered keys with exclude pattern {exclude_pattern}: {original_key_count_ex} -> {len(weights_sd.keys())}"
)
if len(weights_sd) != original_key_count:
remaining_keys = list(set([k.split(".", 1)[0] for k in weights_sd.keys()]))
remaining_keys.sort()
logger.info(f"Remaining LoRA modules after filtering: {remaining_keys}")
if len(weights_sd) == 0:
logger.warning(f"No keys left after filtering.")
if args.lycoris:
lycoris_net, _ = create_network_from_weights(
multiplier=lora_multiplier,
file=None,
weights_sd=weights_sd,
unet=model,
text_encoder=None,
vae=None,
for_inference=True,
)
lycoris_net.merge_to(None, model, weights_sd, dtype=None, device=device)
else:
network = lora_wan.create_arch_network_from_weights(lora_multiplier, weights_sd, unet=model, for_inference=True)
network.merge_to(None, model, weights_sd, device=device, non_blocking=True)
synchronize_device(device)
logger.info("LoRA weights loaded")
# save model here before casting to dit_weight_dtype
if args.save_merged_model:
logger.info(f"Saving merged model to {args.save_merged_model}")
mem_eff_save_file(model.state_dict(), args.save_merged_model) # save_file needs a lot of memory
logger.info("Merged model saved")
def optimize_model(
model: WanModel, args: argparse.Namespace, device: torch.device, dit_dtype: torch.dtype, dit_weight_dtype: torch.dtype
) -> None:
"""optimize the model (FP8 conversion, device move etc.)
Args:
model: dit model
args: command line arguments
device: device to use
dit_dtype: dtype for the model
dit_weight_dtype: dtype for the model weights
"""
if args.fp8_scaled:
# load state dict as-is and optimize to fp8
state_dict = model.state_dict()
# if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
move_to_device = args.blocks_to_swap == 0 # if blocks_to_swap > 0, we will keep the model on CPU
state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=args.fp8_fast)
info = model.load_state_dict(state_dict, strict=True, assign=True)
logger.info(f"Loaded FP8 optimized weights: {info}")
if args.blocks_to_swap == 0:
model.to(device) # make sure all parameters are on the right device (e.g. RoPE etc.)
else:
# simple cast to dit_dtype
target_dtype = None # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
target_device = None
if dit_weight_dtype is not None: # in case of args.fp8 and not args.fp8_scaled
logger.info(f"Convert model to {dit_weight_dtype}")
target_dtype = dit_weight_dtype
if args.blocks_to_swap == 0:
logger.info(f"Move model to device: {device}")
target_device = device
model.to(target_device, target_dtype) # move and cast at the same time. this reduces redundant copy operations
if args.compile:
compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
logger.info(
f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
)
torch._dynamo.config.cache_size_limit = 32
for i in range(len(model.blocks)):
model.blocks[i] = torch.compile(
model.blocks[i],
backend=compile_backend,
mode=compile_mode,
dynamic=compile_dynamic.lower() in "true",
fullgraph=compile_fullgraph.lower() in "true",
)
if args.blocks_to_swap > 0:
logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
else:
# make sure the model is on the right device
model.to(device)
model.eval().requires_grad_(False)
clean_memory_on_device(device)
def prepare_t2v_inputs(
args: argparse.Namespace, config, accelerator: Accelerator, device: torch.device, vae: Optional[WanVAE] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
"""Prepare inputs for T2V (including Fun-Control variation)
Args:
args: command line arguments
config: model configuration
accelerator: Accelerator instance
device: device to use
vae: VAE model, required only for Fun-Control
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
(noise, context, context_null, (arg_c, arg_null))
"""
# Prepare inputs for T2V
# calculate dimensions and sequence length
height, width = args.video_size
# T2V/FunControl length should be set by setup_args
frames = args.video_length
if frames is None:
raise ValueError("video_length must be determined before calling prepare_t2v_inputs")
(_, lat_f, lat_h, lat_w), seq_len = calculate_dimensions(args.video_size, frames, config)
target_shape = (16, lat_f, lat_h, lat_w) # Latent channel dim is 16
# configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt
# set seed
seed = args.seed # Seed should be set in generate()
if not args.cpu_noise:
seed_g = torch.Generator(device=device)
seed_g.manual_seed(seed)
else:
# ComfyUI compatible noise
seed_g = torch.manual_seed(seed)
# load text encoder
text_encoder = load_text_encoder(args, config, device)
text_encoder.model.to(device)
# encode prompt
with torch.no_grad():
if args.fp8_t5:
with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype):
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
else:
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
# free text encoder and clean memory
del text_encoder
clean_memory_on_device(device)
# Fun-Control: encode control video to latent space
y = None
if config.is_fun_control and args.control_path:
if vae is None:
raise ValueError("VAE must be provided for Fun-Control input preparation.")
logger.info(f"Encoding control video for Fun-Control")
control_video = load_control_video(args.control_path, frames, height, width).to(device)
vae.to_device(device)
with accelerator.autocast(), torch.no_grad():
y = vae.encode([control_video])[0] # Encode video
y = y * args.control_strength # Apply strength
vae.to_device("cpu" if args.vae_cache_cpu else "cpu") # Move VAE back
clean_memory_on_device(device)
logger.info(f"Fun-Control conditioning 'y' shape: {y.shape}")
# generate noise
noise = torch.randn(target_shape, dtype=torch.float32, generator=seed_g, device=device if not args.cpu_noise else "cpu")
noise = noise.to(device)
# prepare model input arguments
arg_c = {"context": context, "seq_len": seq_len}
arg_null = {"context": context_null, "seq_len": seq_len}
if y is not None: # Add 'y' only if Fun-Control generated it
arg_c["y"] = [y]
arg_null["y"] = [y]
return noise, context, context_null, (arg_c, arg_null)
def load_video_frames(video_path: str, num_frames: int, target_reso: Tuple[int, int]) -> Tuple[List[np.ndarray], torch.Tensor]:
"""Load the first N frames from a video, resize, return numpy list and normalized tensor.
Args:
video_path (str): Path to the video file.
num_frames (int): Number of frames to load from the start.
target_reso (Tuple[int, int]): Target resolution (height, width).
Returns:
Tuple[List[np.ndarray], torch.Tensor]:
- List of numpy arrays (frames) in HWC, RGB, uint8 format.
- Tensor of shape [C, F, H, W], float32, range [0, 1].
"""
logger.info(f"Loading first {num_frames} frames from {video_path}, target reso {target_reso}")
target_h, target_w = target_reso
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
# Get total frame count and check if enough frames exist
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames < num_frames:
cap.release()
raise ValueError(f"Video has only {total_frames} frames, but {num_frames} were requested for input.")
# Read frames
frames_np = []
for i in range(num_frames):
ret, frame = cap.read()
if not ret:
logger.warning(f"Could only read {len(frames_np)} frames out of {num_frames} requested from {video_path}.")
break
# Convert BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Resize
current_h, current_w = frame_rgb.shape[:2]
interpolation = cv2.INTER_AREA if target_h * target_w < current_h * current_w else cv2.INTER_LANCZOS4
frame_resized = cv2.resize(frame_rgb, (target_w, target_h), interpolation=interpolation)
frames_np.append(frame_resized)
cap.release()
if len(frames_np) != num_frames:
raise RuntimeError(f"Failed to load the required {num_frames} frames.")
# Convert list of numpy arrays to tensor [F, H, W, C] -> [C, F, H, W], range [0, 1]
frames_tensor = torch.from_numpy(np.stack(frames_np, axis=0)).permute(0, 3, 1, 2).float() / 255.0
frames_tensor = frames_tensor.permute(1, 0, 2, 3) # [C, F, H, W]
logger.info(f"Loaded {len(frames_np)} input frames. Tensor shape: {frames_tensor.shape}")
# Return both the original numpy frames (for saving later) and the normalized tensor
return frames_np, frames_tensor
# Combined function for I2V and Extend modes
def prepare_i2v_or_extend_inputs(
args: argparse.Namespace, config, accelerator: Accelerator, device: torch.device, vae: WanVAE,
input_frames_tensor: Optional[torch.Tensor] = None # Required for Extend mode
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, Tuple[dict, dict]]:
"""Prepare inputs for I2V (single image) or Extend (multiple frames)."""
if vae is None:
raise ValueError("VAE must be provided for I2V/Extend input preparation.")
is_extend_mode = input_frames_tensor is not None
is_i2v_mode = args.image_path is not None
# --- Get Dimensions and Frame Counts ---
height, width = args.video_size
frames = args.video_length # Total frames for diffusion process
if frames is None:
raise ValueError("video_length must be set before calling prepare_i2v_or_extend_inputs")
num_input_frames = 0
if is_extend_mode:
num_input_frames = args.num_input_frames
if num_input_frames >= frames:
raise ValueError(f"Number of input frames ({num_input_frames}) must be less than total video length ({frames})")
elif is_i2v_mode:
num_input_frames = 1
# --- Load Input Image(s) / Frames ---
img_tensor_for_clip = None # Representative tensor for CLIP
img_tensor_for_vae = None # Tensor containing all input frames/image for VAE
if is_extend_mode:
# Input frames tensor already provided (normalized [0,1])
img_tensor_for_vae = input_frames_tensor.to(device)
# Use first frame for CLIP
img_tensor_for_clip = img_tensor_for_vae[:, 0:1, :, :] # [C, 1, H, W]
logger.info(f"Preparing inputs for Extend mode with {num_input_frames} input frames.")
elif is_i2v_mode:
# Load single image
img = Image.open(args.image_path).convert("RGB")
img_cv2 = np.array(img)
interpolation = cv2.INTER_AREA if height < img_cv2.shape[0] else cv2.INTER_CUBIC
img_resized_np = cv2.resize(img_cv2, (width, height), interpolation=interpolation)
# Normalized [0,1], shape [C, H, W]
img_tensor_single = TF.to_tensor(img_resized_np).to(device)
# Add frame dimension -> [C, 1, H, W]
img_tensor_for_vae = img_tensor_single.unsqueeze(1)
img_tensor_for_clip = img_tensor_for_vae
logger.info("Preparing inputs for standard I2V mode.")
else:
raise ValueError("Neither extend_video nor image_path provided for I2V/Extend preparation.")
# --- Optional End Frame ---
has_end_image = args.end_image_path is not None
end_img_tensor_vae = None # Normalized [-1, 1], shape [C, 1, H, W]
if has_end_image:
end_img = Image.open(args.end_image_path).convert("RGB")
end_img_cv2 = np.array(end_img)
interpolation_end = cv2.INTER_AREA if height < end_img_cv2.shape[0] else cv2.INTER_CUBIC
end_img_resized_np = cv2.resize(end_img_cv2, (width, height), interpolation=interpolation_end)
# Normalized [0,1], shape [C, H, W] -> [C, 1, H, W]
end_img_tensor_load = TF.to_tensor(end_img_resized_np).unsqueeze(1).to(device)
end_img_tensor_vae = (end_img_tensor_load * 2.0 - 1.0) # Scale to [-1, 1] for VAE
logger.info(f"Loaded end image: {args.end_image_path}")
# --- Calculate Latent Dimensions ---
lat_f = (frames - 1) // config.vae_stride[0] + 1 # Total latent frames
lat_h = height // config.vae_stride[1]
lat_w = width // config.vae_stride[2]
# Latent frames corresponding to the input pixel frames
lat_input_f = (num_input_frames - 1) // config.vae_stride[0] + 1
max_seq_len = math.ceil((lat_f + (1 if has_end_image else 0)) * lat_h * lat_w / (config.patch_size[1] * config.patch_size[2]))
logger.info(f"Target latent shape: ({lat_f}, {lat_h}, {lat_w}), Input latent frames: {lat_input_f}, Seq len: {max_seq_len}")
# --- Set Seed ---
seed = args.seed
seed_g = torch.Generator(device=device) if not args.cpu_noise else torch.manual_seed(seed)
if not args.cpu_noise:
seed_g.manual_seed(seed)
# --- Generate Noise ---
# Noise for the *entire* processing duration (including input frame slots)
noise = torch.randn(
16, lat_f + (1 if has_end_image else 0), lat_h, lat_w,
dtype=torch.float32, generator=seed_g, device=device if not args.cpu_noise else "cpu"
).to(device)
# --- Text Encoding ---
n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt
text_encoder = load_text_encoder(args, config, device)
text_encoder.model.to(device)
with torch.no_grad():
if args.fp8_t5:
with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype):
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
else:
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
del text_encoder
clean_memory_on_device(device)
# --- CLIP Encoding ---
clip = load_clip_model(args, config, device)
clip.model.to(device)
with torch.amp.autocast(device_type=device.type, dtype=torch.float16), torch.no_grad():
# Input needs to be [-1, 1], shape [C, 1, H, W] (or maybe [C, F, H, W] if model supports?)
# Assuming visual encoder takes one frame: use the representative clip tensor
clip_input = img_tensor_for_clip.sub_(0.5).div_(0.5) # Scale [0,1] -> [-1,1]
clip_context = clip.visual([clip_input]) # Pass as list [tensor]
del clip
clean_memory_on_device(device)
# --- VAE Encoding for Conditioning Tensor 'y' ---
vae.to_device(device)
y_latent_part = torch.zeros(config.latent_channels, lat_f + (1 if has_end_image else 0), lat_h, lat_w, device=device, dtype=vae.dtype)
with accelerator.autocast(), torch.no_grad():
# Encode the input frames/image (scale [0,1] -> [-1,1])
input_frames_vae = (img_tensor_for_vae * 2.0 - 1.0).to(dtype=vae.dtype) # [-1, 1]
# Pad with zeros if needed to match VAE chunking? Assume encode handles variable length for now.
encoded_input_latents = vae.encode([input_frames_vae])[0] # [C', F_in', H', W']
actual_encoded_input_f = encoded_input_latents.shape[1]
if actual_encoded_input_f > lat_input_f:
logger.warning(f"VAE encoded {actual_encoded_input_f} frames, expected {lat_input_f}. Truncating.")
encoded_input_latents = encoded_input_latents[:, :lat_input_f, :, :]
elif actual_encoded_input_f < lat_input_f:
logger.warning(f"VAE encoded {actual_encoded_input_f} frames, expected {lat_input_f}. Padding needed for mask.")
# This case shouldn't happen if lat_input_f calculation is correct, but handle defensively
# Place encoded input latents into the full y tensor
y_latent_part[:, :actual_encoded_input_f, :, :] = encoded_input_latents
# Encode end image if present
if has_end_image and end_img_tensor_vae is not None:
encoded_end_latent = vae.encode([end_img_tensor_vae.to(dtype=vae.dtype)])[0] # [C', 1, H', W']
y_latent_part[:, -1:, :, :] = encoded_end_latent # Place at the end
# --- Create Mask ---
msk = torch.zeros(4, lat_f + (1 if has_end_image else 0), lat_h, lat_w, device=device, dtype=vae.dtype)
msk[:, :lat_input_f, :, :] = 1 # Mask the input frames
if has_end_image:
msk[:, -1:, :, :] = 1 # Mask the end frame
# --- Combine Mask and Latent Part for 'y' ---
y = torch.cat([msk, y_latent_part], dim=0) # Shape [4+C', F_total', H', W']
logger.info(f"Constructed conditioning 'y' tensor shape: {y.shape}")
# --- Fun-Control Integration (Optional, might need adjustment for Extend mode) ---
if config.is_fun_control and args.control_path:
logger.warning("Fun-Control with Extend mode is experimental. Control signal might conflict with input frames.")
control_video = load_control_video(args.control_path, frames + (1 if has_end_image else 0), height, width).to(device)
with accelerator.autocast(), torch.no_grad():
control_latent = vae.encode([control_video])[0] # Encode control video
control_latent = control_latent * args.control_strength # Apply strength
# How to combine? Replace y? Add? For now, let's assume control replaces the VAE part of y
y = torch.cat([msk, control_latent], dim=0) # Overwrite latent part with control
logger.info(f"Replaced latent part of 'y' with Fun-Control latent. New 'y' shape: {y.shape}")
vae.to_device("cpu" if args.vae_cache_cpu else "cpu") # Move VAE back
clean_memory_on_device(device)
# --- Prepare Model Input Dictionaries ---
arg_c = {
"context": [context[0]], # Needs list format? Check model forward
"clip_fea": clip_context,
"seq_len": max_seq_len,
"y": [y], # Pass conditioning tensor y
}
arg_null = {
"context": context_null,
"clip_fea": clip_context,
"seq_len": max_seq_len,
"y": [y], # Pass conditioning tensor y
}
return noise, context, context_null, y, (arg_c, arg_null)
# --- V2V Helper Functions ---
def load_video(video_path, start_frame=0, num_frames=None, bucket_reso=(256, 256)):
"""Load video frames and resize them to the target resolution for V2V.
Args:
video_path (str): Path to the video file
start_frame (int): First frame to load (0-indexed)
num_frames (int, optional): Number of frames to load. If None, load all frames from start_frame.
bucket_reso (tuple): Target resolution (height, width)
Returns:
list: List of numpy arrays containing video frames in RGB format, resized.
int: Actual number of frames loaded.
"""
logger.info(f"Loading video for V2V from {video_path}, target reso {bucket_reso}, frames {start_frame}-{start_frame+num_frames if num_frames else 'end'}")
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Failed to open video file: {video_path}")
# Get total frame count and FPS
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
logger.info(f"Input video has {total_frames} frames, {fps} FPS")
# Calculate how many frames to load
if num_frames is None:
frames_to_load = total_frames - start_frame
else:
# Make sure we don't try to load more frames than exist
frames_to_load = min(num_frames, total_frames - start_frame)
if frames_to_load <= 0:
cap.release()
logger.warning(f"No frames to load (start_frame={start_frame}, num_frames={num_frames}, total_frames={total_frames})")
return [], 0
# Skip to start frame
if start_frame > 0:
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
# Read frames
frames = []
target_h, target_w = bucket_reso
for i in range(frames_to_load):
ret, frame = cap.read()
if not ret:
logger.warning(f"Could only read {len(frames)} frames out of {frames_to_load} requested.")
break
# Convert from BGR to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Resize the frame
current_h, current_w = frame_rgb.shape[:2]
interpolation = cv2.INTER_AREA if target_h * target_w < current_h * current_w else cv2.INTER_LANCZOS4
frame_resized = cv2.resize(frame_rgb, (target_w, target_h), interpolation=interpolation)
frames.append(frame_resized)
cap.release()
actual_frames_loaded = len(frames)
logger.info(f"Successfully loaded and resized {actual_frames_loaded} frames for V2V.")
return frames, actual_frames_loaded
def encode_video_to_latents(video_tensor: torch.Tensor, vae: WanVAE, device: torch.device, vae_dtype: torch.dtype, args: argparse.Namespace) -> torch.Tensor:
"""Encode video tensor to latent space using VAE for V2V.
Args:
video_tensor (torch.Tensor): Video tensor with shape [B, C, F, H, W], values in [-1, 1].
vae (WanVAE): VAE model instance.
device (torch.device): Device to perform encoding on.
vae_dtype (torch.dtype): Target dtype for the output latents.
args (argparse.Namespace): Command line arguments (needed for vae_cache_cpu).
Returns:
torch.Tensor: Encoded latents with shape [B, C', F', H', W'].
"""
if vae is None:
raise ValueError("VAE must be provided for video encoding.")
logger.info(f"Encoding video tensor to latents: input shape {video_tensor.shape}")
# Ensure VAE is on the correct device
vae.to_device(device)
# Prepare video tensor: move to device, ensure correct dtype
video_tensor = video_tensor.to(device=device, dtype=vae.dtype) # Use VAE's dtype
# WanVAE expects input as a list of [C, F, H, W] tensors (no batch dim)
latents_list = []
batch_size = video_tensor.shape[0]
for i in range(batch_size):
video_single = video_tensor[i] # Shape [C, F, H, W]
with torch.no_grad(), torch.autocast(device_type=device.type, dtype=vae.dtype):
encoded_latent = vae.encode([video_single])[0] # Returns tensor [C', F', H', W']
latents_list.append(encoded_latent)
# Stack results back into a batch
latents = torch.stack(latents_list, dim=0) # Shape [B, C', F', H', W']
# Move VAE back to CPU (or cache device)
vae_target_device = torch.device("cpu") if not args.vae_cache_cpu else torch.device("cpu")
if args.vae_cache_cpu: logger.info("Moving VAE to CPU for caching.")
else: logger.info("Moving VAE to CPU after encoding.")
vae.to_device(vae_target_device)
clean_memory_on_device(device)
# Convert latents to the desired final dtype (e.g., bfloat16 for DiT)
latents = latents.to(dtype=vae_dtype) # Use the target vae_dtype passed to function
logger.info(f"Encoded video latents shape: {latents.shape}, dtype: {latents.dtype}")
return latents
def prepare_v2v_inputs(args: argparse.Namespace, config, accelerator: Accelerator, device: torch.device, video_latents: torch.Tensor):
"""Prepare inputs for Video2Video inference based on encoded video latents.
Args:
args (argparse.Namespace): Command line arguments.
config: Model configuration.
accelerator: Accelerator instance.
device (torch.device): Device to use.
video_latents (torch.Tensor): Encoded latent representation of input video [B, C', F', H', W'].
Returns:
Tuple containing noise, context, context_null, (arg_c, arg_null).
"""
# Get dimensions directly from the video latents
if len(video_latents.shape) != 5:
raise ValueError(f"Expected video_latents to have 5 dimensions [B, C, F, H, W], but got shape {video_latents.shape}")
batch_size, latent_channels, lat_f, lat_h, lat_w = video_latents.shape
if batch_size != 1:
logger.warning(f"V2V input preparation currently assumes batch size 1, but got {batch_size}. Using first item.")
video_latents = video_latents[0:1] # Keep batch dim
# Calculate target shape and sequence length based on actual latent dimensions
target_shape = video_latents.shape[1:] # [C', F', H', W']
(_, _, _), seq_len = calculate_dimensions((args.video_size[0], args.video_size[1]), args.video_length, config) # Use original args to get seq_len
# (_, _, _), seq_len = calculate_dimensions((lat_h * config.vae_stride[1], lat_w * config.vae_stride[2]), (lat_f-1)*config.vae_stride[0]+1, config) # Recalculate seq_len from latent dims
logger.info(f"V2V derived latent shape: {target_shape}, seq_len: {seq_len}")
# Configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else config.sample_neg_prompt
# Set seed (already set in generate(), just need generator)
seed = args.seed
if not args.cpu_noise:
seed_g = torch.Generator(device=device)
seed_g.manual_seed(seed)
else:
seed_g = torch.manual_seed(seed)
# Load text encoder
text_encoder = load_text_encoder(args, config, device)
text_encoder.model.to(device)
# Encode prompt
with torch.no_grad():
if args.fp8_t5:
with torch.amp.autocast(device_type=device.type, dtype=config.t5_dtype):
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
else:
context = text_encoder([args.prompt], device)
context_null = text_encoder([n_prompt], device)
# Free text encoder and clean memory
del text_encoder
clean_memory_on_device(device)
# Generate noise with the same shape as video_latents (including batch dimension)
noise = torch.randn(
video_latents.shape, # [B, C', F', H', W']
dtype=torch.float32,
device=device if not args.cpu_noise else "cpu",
generator=seed_g
)
noise = noise.to(device) # Ensure noise is on the target device
# Prepare model input arguments (context needs to match batch size of latents)
arg_c = {"context": context, "seq_len": seq_len}
arg_null = {"context": context_null, "seq_len": seq_len}
# V2V does not use 'y' or 'clip_fea' in the standard Wan model case
return noise, context, context_null, (arg_c, arg_null)
# --- End V2V Helper Functions ---
def load_control_video(control_path: str, frames: int, height: int, width: int) -> torch.Tensor:
"""load control video to pixel space for Fun-Control model
Args:
control_path: path to control video
frames: number of frames in the video
height: height of the video
width: width of the video
Returns:
torch.Tensor: control video tensor, CFHW, range [-1, 1]
"""
logger.info(f"Load control video for Fun-Control from {control_path}")
# Use the original helper from hv_generate_video for consistency
if os.path.isfile(control_path):
# Use hv_load_video which returns list of numpy arrays (HWC, 0-255)
# NOTE: hv_load_video takes (W, H) for bucket_reso!
video_frames_np = hv_load_video(control_path, 0, frames, bucket_reso=(width, height))
elif os.path.isdir(control_path):
# Use hv_load_images which returns list of numpy arrays (HWC, 0-255)
# NOTE: hv_load_images takes (W, H) for bucket_reso!
video_frames_np = hv_load_images(control_path, frames, bucket_reso=(width, height))
else:
raise FileNotFoundError(f"Control path not found: {control_path}")
if not video_frames_np:
raise ValueError(f"No frames loaded from control path: {control_path}")
if len(video_frames_np) < frames:
logger.warning(f"Control video has {len(video_frames_np)} frames, less than requested {frames}. Using available frames and repeating last.")
# Repeat last frame to match length
last_frame = video_frames_np[-1]
video_frames_np.extend([last_frame] * (frames - len(video_frames_np)))
# Stack and convert to tensor: F, H, W, C (0-255) -> F, C, H, W (-1 to 1)
video_frames_np = np.stack(video_frames_np, axis=0)
video_tensor = torch.from_numpy(video_frames_np).permute(0, 3, 1, 2).float() / 127.5 - 1.0 # Normalize to [-1, 1]
# Permute to C, F, H, W
video_tensor = video_tensor.permute(1, 0, 2, 3)
logger.info(f"Loaded Fun-Control video tensor shape: {video_tensor.shape}")
return video_tensor
def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
"""setup scheduler for sampling
Args:
args: command line arguments
config: model configuration
device: device to use
Returns:
Tuple[Any, torch.Tensor]: (scheduler, timesteps)
"""
if args.sample_solver == "unipc":
scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
timesteps = scheduler.timesteps
elif args.sample_solver == "dpm++":
scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
)
sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
elif args.sample_solver == "vanilla":
scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
scheduler.set_timesteps(args.infer_steps, device=device)
timesteps = scheduler.timesteps
# FlowMatchDiscreteScheduler does not support generator argument in step method
org_step = scheduler.step
def step_wrapper(
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
return_dict: bool = True,
generator=None, # Add generator argument here
):
# Call original step, ignoring generator if it doesn't accept it
try:
# Try calling with generator if the underlying class was updated
return org_step(model_output, timestep, sample, return_dict=return_dict, generator=generator)
except TypeError:
# Fallback to calling without generator
# logger.warning("Scheduler step does not support generator argument, proceeding without it.") # Reduce noise
return org_step(model_output, timestep, sample, return_dict=return_dict)
scheduler.step = step_wrapper
else:
raise NotImplementedError(f"Unsupported solver: {args.sample_solver}")
logger.info(f"Using scheduler: {args.sample_solver}, timesteps shape: {timesteps.shape}")
return scheduler, timesteps
def run_sampling(
model: WanModel,
noise: torch.Tensor, # This might be pure noise (T2V/I2V/Extend) or mixed noise+latent (V2V)
scheduler: Any,
timesteps: torch.Tensor, # Might be a subset for V2V
args: argparse.Namespace,
inputs: Tuple[dict, dict], # (arg_c, arg_null)
device: torch.device,
seed_g: torch.Generator,
accelerator: Accelerator,
use_cpu_offload: bool = True,
) -> torch.Tensor:
"""run sampling loop (Denoising)
Args:
model: dit model
noise: initial latent state (pure noise or mixed noise/video latent)
scheduler: scheduler for sampling
timesteps: time steps for sampling (can be subset for V2V)
args: command line arguments
inputs: model input dictionaries (arg_c, arg_null) containing context etc.
device: device to use
seed_g: random generator
accelerator: Accelerator instance
use_cpu_offload: Whether to offload tensors to CPU during processing
Returns:
torch.Tensor: generated latent
"""
arg_c, arg_null = inputs
# Ensure inputs (context, y, etc.) are correctly formatted (e.g., lists if model expects list input)
# Example: ensure context is list [tensor] if model expects list
if isinstance(arg_c.get("context"), torch.Tensor):
arg_c["context"] = [arg_c["context"]]
if isinstance(arg_null.get("context"), torch.Tensor):
arg_null["context"] = [arg_null["context"]]
# Similar checks/conversions for other keys like 'y' if needed based on WanModel.forward signature
latent = noise # Initialize latent state [B, C, F, H, W]
latent_storage_device = device if not use_cpu_offload else "cpu"
latent = latent.to(latent_storage_device) # Move initial state to storage device
# cfg skip logic
apply_cfg_array = []
num_timesteps = len(timesteps)
if args.cfg_skip_mode != "none" and args.cfg_apply_ratio is not None:
# Calculate thresholds based on cfg_apply_ratio
apply_steps = int(num_timesteps * args.cfg_apply_ratio)
if args.cfg_skip_mode == "early":
start_index = num_timesteps - apply_steps; end_index = num_timesteps
elif args.cfg_skip_mode == "late":
start_index = 0; end_index = apply_steps
elif args.cfg_skip_mode == "early_late":
start_index = (num_timesteps - apply_steps) // 2; end_index = start_index + apply_steps
elif args.cfg_skip_mode == "middle":
skip_steps = num_timesteps - apply_steps
middle_start = (num_timesteps - skip_steps) // 2; middle_end = middle_start + skip_steps
else: # Includes "alternate" - handled inside loop
start_index = 0; end_index = num_timesteps # Default range for alternate
w = 0.0 # For alternate mode
for step_idx in range(num_timesteps):
apply = True # Default
if args.cfg_skip_mode == "alternate":
w += args.cfg_apply_ratio; apply = w >= 1.0
if apply: w -= 1.0
elif args.cfg_skip_mode == "middle":
apply = not (step_idx >= middle_start and step_idx < middle_end)
elif args.cfg_skip_mode != "none": # early, late, early_late
apply = step_idx >= start_index and step_idx < end_index
apply_cfg_array.append(apply)
pattern = ["A" if apply else "S" for apply in apply_cfg_array]
pattern = "".join(pattern)
logger.info(f"CFG skip mode: {args.cfg_skip_mode}, apply ratio: {args.cfg_apply_ratio}, steps: {num_timesteps}, pattern: {pattern}")
else:
# Apply CFG on all steps
apply_cfg_array = [True] * num_timesteps
# SLG (Skip Layer Guidance) setup
apply_slg_global = args.slg_layers is not None and args.slg_mode is not None
slg_start_step = int(args.slg_start * num_timesteps)
slg_end_step = int(args.slg_end * num_timesteps)
logger.info(f"Starting sampling loop for {num_timesteps} steps.")
for i, t in enumerate(tqdm(timesteps)):
# Prepare input for the model (move latent to compute device)
# Latent should be [B, C, F, H, W]
# Model expects latent input 'x' as list: [tensor]
latent_on_device = latent.to(device)
latent_model_input_list = [latent_on_device] # Wrap in list
timestep = torch.stack([t]).to(device) # Ensure timestep is a tensor on device
with accelerator.autocast(), torch.no_grad():
# 1. Predict conditional noise estimate
noise_pred_cond = model(x=latent_model_input_list, t=timestep, **arg_c)[0]
noise_pred_cond = noise_pred_cond.to(latent_storage_device)
# 2. Predict unconditional noise estimate (potentially with SLG)
apply_cfg = apply_cfg_array[i]
if apply_cfg:
apply_slg_step = apply_slg_global and (i >= slg_start_step and i < slg_end_step)
slg_indices_for_call = args.slg_layers if apply_slg_step else None
uncond_input_args = arg_null
if apply_slg_step and args.slg_mode == "original":
# Standard uncond prediction first
noise_pred_uncond = model(x=latent_model_input_list, t=timestep, **uncond_input_args)[0].to(latent_storage_device)
# SLG prediction (skipping layers in uncond)
skip_layer_out = model(x=latent_model_input_list, t=timestep, skip_block_indices=slg_indices_for_call, **uncond_input_args)[0].to(latent_storage_device)
# Combine: scaled = uncond + scale * (cond - uncond) + slg_scale * (cond - skip)
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
noise_pred = noise_pred + args.slg_scale * (noise_pred_cond - skip_layer_out)
elif apply_slg_step and args.slg_mode == "uncond":
# SLG prediction (skipping layers in uncond) replaces standard uncond
noise_pred_uncond = model(x=latent_model_input_list, t=timestep, skip_block_indices=slg_indices_for_call, **uncond_input_args)[0].to(latent_storage_device)
# Combine: scaled = slg_uncond + scale * (cond - slg_uncond)
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
else:
# Regular CFG (no SLG or SLG not active this step)
noise_pred_uncond = model(x=latent_model_input_list, t=timestep, **uncond_input_args)[0].to(latent_storage_device)
# Combine: scaled = uncond + scale * (cond - uncond)
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
else:
# CFG is skipped for this step, use conditional prediction directly
noise_pred = noise_pred_cond
# 3. Compute previous sample state with the scheduler
# Scheduler expects noise_pred [B, C, F, H, W] and latent [B, C, F, H, W]
scheduler_output = scheduler.step(
noise_pred.to(device), # Ensure noise_pred is on compute device
t,
latent_on_device, # Pass the tensor directly
return_dict=False,
generator=seed_g # Pass generator
)
prev_latent = scheduler_output[0] # Get the new latent state [B, C, F, H, W]
# 4. Update latent state (move back to storage device)
latent = prev_latent.to(latent_storage_device)
# Return the final denoised latent (should be on storage device)
logger.info("Sampling loop finished.")
return latent
def generate(args: argparse.Namespace) -> Tuple[Optional[torch.Tensor], Optional[List[np.ndarray]]]:
"""main function for generation pipeline (T2V, I2V, V2V, Extend)
Args:
args: command line arguments
Returns:
Tuple[Optional[torch.Tensor], Optional[List[np.ndarray]]]:
- generated latent tensor [B, C, F, H, W], or None if error/skipped.
- list of original input frames (numpy HWC RGB uint8) if in Extend mode, else None.
"""
device = torch.device(args.device)
cfg = WAN_CONFIGS[args.task]
# --- Determine Mode ---
is_extend_mode = args.extend_video is not None
is_i2v_mode = args.image_path is not None and not is_extend_mode
is_v2v_mode = args.video_path is not None
is_fun_control = args.control_path is not None and cfg.is_fun_control # Can overlap
is_t2v_mode = not is_extend_mode and not is_i2v_mode and not is_v2v_mode and not is_fun_control
mode_str = ("Extend" if is_extend_mode else
"I2V" if is_i2v_mode else
"V2V" if is_v2v_mode else
"T2V" + ("+FunControl" if is_fun_control else ""))
if is_fun_control and not is_t2v_mode: # If funcontrol combined with other modes
mode_str += "+FunControl"
logger.info(f"Running in {mode_str} mode")
# --- Data Types ---
dit_dtype = detect_wan_sd_dtype(args.dit) if args.dit is not None else torch.bfloat16
if dit_dtype.itemsize == 1:
dit_dtype = torch.bfloat16
if args.fp8_scaled: raise ValueError("Cannot use --fp8_scaled with pre-quantized FP8 weights.")
dit_weight_dtype = None
elif args.fp8_scaled: dit_weight_dtype = None
elif args.fp8: dit_weight_dtype = torch.float8_e4m3fn
else: dit_weight_dtype = dit_dtype
vae_dtype = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else (torch.bfloat16 if dit_dtype == torch.bfloat16 else torch.float16)
logger.info(
f"Using device: {device}, DiT compute: {dit_dtype}, DiT weight: {dit_weight_dtype or 'Mixed (FP8 Scaled)' if args.fp8_scaled else dit_dtype}, VAE: {vae_dtype}, T5 FP8: {args.fp8_t5}"
)
# --- Accelerator ---
mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16"
accelerator = accelerate.Accelerator(mixed_precision=mixed_precision)
# --- Seed ---
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
args.seed = seed
logger.info(f"Using seed: {seed}")
# --- Load VAE (if needed for input processing) ---
vae = None
needs_vae_early = is_extend_mode or is_i2v_mode or is_v2v_mode or is_fun_control
if needs_vae_early:
vae = load_vae(args, cfg, device, vae_dtype)
# --- Prepare Inputs ---
noise = None
context = None
context_null = None
inputs = None
video_latents = None # For V2V mixing
original_input_frames_np = None # For Extend mode saving
if is_extend_mode:
# 1. Load initial frames (numpy list and normalized tensor)
original_input_frames_np, input_frames_tensor = load_video_frames(
args.extend_video, args.num_input_frames, tuple(args.video_size)
)
# 2. Prepare inputs using the loaded frames tensor
noise, context, context_null, _, inputs = prepare_i2v_or_extend_inputs(
args, cfg, accelerator, device, vae, input_frames_tensor=input_frames_tensor
)
del input_frames_tensor # Free memory
clean_memory_on_device(device)
elif is_i2v_mode:
# Prepare I2V inputs (single image)
noise, context, context_null, _, inputs = prepare_i2v_or_extend_inputs(
args, cfg, accelerator, device, vae
)
elif is_v2v_mode:
# 1. Load and prepare video
video_frames_np, actual_frames_loaded = load_video(
args.video_path, start_frame=0, num_frames=args.video_length, bucket_reso=tuple(args.video_size)
)
if actual_frames_loaded == 0: raise ValueError(f"Could not load frames from video: {args.video_path}")
if args.video_length is None or actual_frames_loaded < args.video_length:
logger.info(f"Updating video_length based on loaded V2V frames: {actual_frames_loaded}")
args.video_length = actual_frames_loaded
height, width, video_length = check_inputs(args) # Re-check
# Convert frames np [F,H,W,C] uint8 -> tensor [1,C,F,H,W] float32 [-1, 1]
video_tensor = torch.from_numpy(np.stack(video_frames_np, axis=0))
video_tensor = video_tensor.permute(0, 3, 1, 2).float() # F,C,H,W
video_tensor = video_tensor.permute(1, 0, 2, 3).unsqueeze(0) # 1,C,F,H,W
video_tensor = video_tensor / 127.5 - 1.0 # Normalize to [-1, 1]
# 2. Encode video to latents (pass vae_dtype for DiT compatibility)
video_latents = encode_video_to_latents(video_tensor, vae, device, vae_dtype, args)
del video_tensor, video_frames_np
clean_memory_on_device(device)
# 3. Prepare V2V inputs (noise, context, etc.)
noise, context, context_null, inputs = prepare_v2v_inputs(args, cfg, accelerator, device, video_latents)
elif is_t2v_mode or is_fun_control: # Should handle T2V+FunControl here
# Prepare T2V inputs (passes VAE if is_fun_control)
if args.video_length is None:
raise ValueError("video_length must be specified for T2V/Fun-Control.")
noise, context, context_null, inputs = prepare_t2v_inputs(args, cfg, accelerator, device, vae if is_fun_control else None)
# At this point, VAE should be on CPU/cache unless still needed for decoding
# --- Load DiT Model ---
is_i2v_like = is_i2v_mode or is_extend_mode
model = load_dit_model(args, cfg, device, dit_dtype, dit_weight_dtype, is_i2v_like)
# --- Merge LoRA ---
if args.lora_weight is not None and len(args.lora_weight) > 0:
merge_lora_weights(model, args, device)
if args.save_merged_model:
logger.info("Merged model saved. Exiting without generation.")
return None, None
# --- Optimize Model ---
optimize_model(model, args, device, dit_dtype, dit_weight_dtype)
# --- Setup Scheduler & Timesteps ---
scheduler, timesteps = setup_scheduler(args, cfg, device)
# --- Prepare for Sampling ---
seed_g = torch.Generator(device=device)
seed_g.manual_seed(seed)
latent = noise # Start with noise (correctly shaped for T2V/I2V/Extend)
# --- V2V Strength Adjustment ---
if is_v2v_mode and args.strength < 1.0:
if video_latents is None: raise RuntimeError("video_latents not available for V2V strength.")
num_inference_steps = max(1, int(args.infer_steps * args.strength))
logger.info(f"V2V Strength: {args.strength}, adjusting inference steps to {num_inference_steps}")
t_start_idx = len(timesteps) - num_inference_steps
if t_start_idx < 0: t_start_idx = 0
t_start = timesteps[t_start_idx]
# Use scheduler.add_noise for proper mixing
video_latents = video_latents.to(device=noise.device, dtype=noise.dtype)
latent = scheduler.add_noise(video_latents, noise, t_start.unsqueeze(0).expand(noise.shape[0])) # Add noise based on start time
latent = latent.to(noise.dtype) # Ensure correct dtype after add_noise
logger.info(f"Mixed noise and video latents using scheduler.add_noise at timestep {t_start.item():.1f}")
timesteps = timesteps[t_start_idx:] # Use subset of timesteps
logger.info(f"Using last {len(timesteps)} timesteps for V2V sampling.")
else:
logger.info(f"Using full {len(timesteps)} timesteps for sampling.")
# Latent remains the initial noise (already handles I2V/Extend via 'y' conditioning)
# --- Run Sampling Loop ---
logger.info("Starting denoising sampling loop...")
final_latent = run_sampling(
model, latent, scheduler, timesteps, args, inputs, device, seed_g, accelerator,
use_cpu_offload=(args.blocks_to_swap > 0)
)
# --- Cleanup ---
del model, scheduler, context, context_null, inputs
if video_latents is not None: del video_latents
synchronize_device(device)
if args.blocks_to_swap > 0:
logger.info("Waiting 5 seconds for block swap cleanup...")
time.sleep(5)
gc.collect()
clean_memory_on_device(device)
# Store VAE instance for decoding
args._vae = vae
# Return latent [B, C, F, H, W] and original frames if extending
if len(final_latent.shape) == 4: final_latent = final_latent.unsqueeze(0)
return final_latent, original_input_frames_np
def decode_latent(latent: torch.Tensor, args: argparse.Namespace, cfg) -> torch.Tensor:
"""decode latent tensor to video frames
Args:
latent: latent tensor [B, C, F, H, W]
args: command line arguments (contains _vae instance)
cfg: model configuration
Returns:
torch.Tensor: decoded video tensor [B, C, F, H, W], range [0, 1], on CPU
"""
device = torch.device(args.device)
vae = None
if hasattr(args, "_vae") and args._vae is not None:
vae = args._vae
logger.info("Using VAE instance from generation pipeline for decoding.")
else:
logger.info("Loading VAE for decoding...")
vae_dtype_decode = str_to_dtype(args.vae_dtype) if args.vae_dtype is not None else torch.bfloat16 # Default bfloat16 if not specified
vae = load_vae(args, cfg, device, vae_dtype_decode)
args._vae = vae
vae.to_device(device)
logger.info(f"Decoding video from latents: shape {latent.shape}, dtype {latent.dtype}")
latent_decode = latent.to(device=device, dtype=vae.dtype)
videos = None
with torch.autocast(device_type=device.type, dtype=vae.dtype), torch.no_grad():
# Assuming vae.decode handles batch tensor [B, C, F, H, W] and returns list of [C, F, H, W]
decoded_list = vae.decode(latent_decode)
if decoded_list and len(decoded_list) > 0:
videos = torch.stack(decoded_list, dim=0) # Stack list back into batch: B, C, F, H, W
else:
raise RuntimeError("VAE decoding failed or returned empty list.")
vae.to_device("cpu" if args.vae_cache_cpu else "cpu") # Move back VAE
clean_memory_on_device(device)
logger.info(f"Decoded video shape: {videos.shape}")
# Post-processing: scale [-1, 1] -> [0, 1], clamp, move to CPU float32
videos = (videos + 1.0) / 2.0
videos = torch.clamp(videos, 0.0, 1.0)
video_final = videos.cpu().to(torch.float32)
# Apply trim tail frames *after* decoding
if args.trim_tail_frames > 0:
logger.info(f"Trimming last {args.trim_tail_frames} frames from decoded video.")
video_final = video_final[:, :, : -args.trim_tail_frames, :, :]
logger.info(f"Decoding complete. Final video tensor shape: {video_final.shape}")
return video_final
def save_output(
video_tensor: torch.Tensor, # Full decoded video [B, C, F, H, W], range [0, 1]
args: argparse.Namespace,
original_base_names: Optional[List[str]] = None,
latent_to_save: Optional[torch.Tensor] = None, # Full latent [B, C, F, H, W]
original_input_frames_np: Optional[List[np.ndarray]] = None # For Extend mode
) -> None:
"""save output video, images, or latent, handling concatenation for Extend mode"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
is_extend_mode = original_input_frames_np is not None
# --- Determine Final Video Tensor for Saving ---
video_to_save = video_tensor # Default: save the full decoded tensor
final_video_length = video_tensor.shape[2]
final_height = video_tensor.shape[3]
final_width = video_tensor.shape[4]
if is_extend_mode:
logger.info("Processing output for Extend mode: concatenating original frames with generated frames.")
num_original_frames = len(original_input_frames_np)
# 1. Prepare original frames tensor: list[HWC uint8] -> tensor[B, C, N, H, W] float32 [0,1]
original_frames_np_stacked = np.stack(original_input_frames_np, axis=0) # [N, H, W, C]
original_frames_tensor = torch.from_numpy(original_frames_np_stacked).permute(0, 3, 1, 2).float() / 255.0 # [N, C, H, W]
original_frames_tensor = original_frames_tensor.permute(1, 0, 2, 3).unsqueeze(0) # [1, C, N, H, W]
original_frames_tensor = original_frames_tensor.to(video_tensor.device, dtype=video_tensor.dtype) # Match decoded tensor attributes
# 2. Extract the generated part from the decoded tensor
# The decoded tensor includes reconstructed input frames + generated frames
# We only want the part *after* the input frames.
if video_tensor.shape[2] <= num_original_frames:
logger.error(f"Decoded video length ({video_tensor.shape[2]}) is not longer than original frames ({num_original_frames}). Cannot extract generated part.")
# Fallback to saving the full decoded video? Or raise error?
# Let's save the full decoded video for inspection
logger.warning("Saving the full decoded video instead of concatenating.")
else:
generated_part_tensor = video_tensor[:, :, num_original_frames:, :, :] # [B, C, M, H, W]
# 3. Concatenate original pixel tensor + generated pixel tensor
video_to_save = torch.cat((original_frames_tensor, generated_part_tensor), dim=2) # Concat along Frame dimension
final_video_length = video_to_save.shape[2] # Update final length
logger.info(f"Concatenated original {num_original_frames} frames with generated {generated_part_tensor.shape[2]} frames. Final shape: {video_to_save.shape}")
# --- Determine Base Filename ---
base_name = f"{time_flag}_{seed}"
if original_base_names:
base_name += f"_{original_base_names[0]}" # Use original name if from latent
elif args.extend_video:
input_video_name = os.path.splitext(os.path.basename(args.extend_video))[0]
base_name += f"_ext_{input_video_name}"
elif args.image_path:
input_image_name = os.path.splitext(os.path.basename(args.image_path))[0]
base_name += f"_i2v_{input_image_name}"
elif args.video_path:
input_video_name = os.path.splitext(os.path.basename(args.video_path))[0]
base_name += f"_v2v_{input_video_name}"
# Add prompt hint? Might be too long
# prompt_hint = "".join(filter(str.isalnum, args.prompt))[:20]
# base_name += f"_{prompt_hint}"
# --- Save Latent ---
if (args.output_type == "latent" or args.output_type == "both") and latent_to_save is not None:
latent_path = os.path.join(save_path, f"{base_name}_latent.safetensors")
logger.info(f"Saving latent tensor shape: {latent_to_save.shape}") # Save the full latent
metadata = {}
if not args.no_metadata:
# Get metadata from final saved video dimensions
metadata = {
"prompt": f"{args.prompt}", "negative_prompt": f"{args.negative_prompt or ''}",
"seeds": f"{seed}", "height": f"{final_height}", "width": f"{final_width}",
"video_length": f"{final_video_length}", # Length of the *saved* video/latent
"infer_steps": f"{args.infer_steps}", "guidance_scale": f"{args.guidance_scale}",
"flow_shift": f"{args.flow_shift}", "task": f"{args.task}",
"dit_model": f"{args.dit or os.path.join(args.ckpt_dir, cfg.dit_checkpoint) if args.ckpt_dir else 'N/A'}",
"vae_model": f"{args.vae or os.path.join(args.ckpt_dir, cfg.vae_checkpoint) if args.ckpt_dir else 'N/A'}",
"mode": ("Extend" if is_extend_mode else "I2V" if args.image_path else "V2V" if args.video_path else "T2V"),
}
if is_extend_mode:
metadata["extend_video"] = f"{os.path.basename(args.extend_video)}"
metadata["num_input_frames"] = f"{args.num_input_frames}"
metadata["extend_length"] = f"{args.extend_length}" # Generated part length
metadata["total_processed_length"] = f"{latent_to_save.shape[2]}" # Latent length
# Add other mode details... (V2V strength, I2V image, etc.)
if args.video_path: metadata["v2v_strength"] = f"{args.strength}"
if args.image_path: metadata["i2v_image"] = f"{os.path.basename(args.image_path)}"
if args.end_image_path: metadata["end_image"] = f"{os.path.basename(args.end_image_path)}"
if args.control_path: metadata["funcontrol_video"] = f"{os.path.basename(args.control_path)}"
if args.lora_weight:
metadata["lora_weights"] = ", ".join([os.path.basename(p) for p in args.lora_weight])
metadata["lora_multipliers"] = ", ".join(map(str, args.lora_multiplier))
sd = {"latent": latent_to_save.cpu()}
try:
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent saved to: {latent_path}")
except Exception as e:
logger.error(f"Failed to save latent file: {e}")
# --- Save Video or Images ---
if args.output_type == "video" or args.output_type == "both":
video_path = os.path.join(save_path, f"{base_name}.mp4")
# save_videos_grid expects [B, T, H, W, C], input is [B, C, T, H, W] range [0, 1]
try:
# Ensure tensor is on CPU for saving function
save_videos_grid(video_to_save.cpu(), video_path, fps=args.fps, rescale=False)
logger.info(f"Video saved to: {video_path}")
except Exception as e:
logger.error(f"Failed to save video file: {e}")
logger.error(f"Video tensor info: shape={video_to_save.shape}, dtype={video_to_save.dtype}, min={video_to_save.min()}, max={video_to_save.max()}")
elif args.output_type == "images":
image_save_dir = os.path.join(save_path, base_name)
os.makedirs(image_save_dir, exist_ok=True)
# save_images_grid expects [B, T, H, W, C]
try:
save_images_grid(video_to_save.cpu(), image_save_dir, "frame", rescale=False, save_individually=True)
logger.info(f"Image frames saved to directory: {image_save_dir}")
except Exception as e:
logger.error(f"Failed to save image files: {e}")
def main():
# --- Argument Parsing & Setup ---
args = parse_args()
latents_mode = args.latent_path is not None and len(args.latent_path) > 0
device_str = args.device if args.device is not None else ("cuda" if torch.cuda.is_available() else "cpu")
args.device = torch.device(device_str)
logger.info(f"Using device: {args.device}")
generated_latent = None
original_input_frames_np = None # Store original frames for extend mode
cfg = WAN_CONFIGS[args.task]
height, width, video_length = None, None, None
original_base_names = None # For naming output when loading latents
if not latents_mode:
# --- Generation Mode ---
logger.info("Running in Generation Mode")
args = setup_args(args) # Sets defaults, calculates video_length for extend mode
height, width, video_length = check_inputs(args) # Validate final dimensions
args.video_size = [height, width]
args.video_length = video_length # Ensure video_length is stored in args for processing
mode_str = ("Extend" if args.extend_video else
"I2V" if args.image_path else
"V2V" if args.video_path else
"T2V" + ("+FunControl" if args.control_path else ""))
if args.control_path and not (args.extend_video or args.image_path or args.video_path):
pass # Already handled above
elif args.control_path:
mode_str += "+FunControl"
logger.info(f"Mode: {mode_str}")
logger.info(
f"Settings: video size: {height}x{width}, processed length: {video_length} frames, fps: {args.fps}, "
f"infer_steps: {args.infer_steps}, guidance: {args.guidance_scale}, flow_shift: {args.flow_shift}"
)
if args.extend_video:
logger.info(f" Extend details: Input video: {args.extend_video}, Input frames: {args.num_input_frames}, Generated frames: {args.extend_length}")
# Core generation pipeline - returns latent and potentially original frames
generated_latent, original_input_frames_np = generate(args)
if args.save_merged_model:
logger.info("Exiting after saving merged model.")
return
if generated_latent is None:
logger.error("Generation failed or was skipped, exiting.")
return
# Get dimensions from the *generated latent* for logging/metadata consistency
_, _, lat_f, lat_h, lat_w = generated_latent.shape
processed_pixel_height = lat_h * cfg.vae_stride[1]
processed_pixel_width = lat_w * cfg.vae_stride[2]
processed_pixel_frames = (lat_f - 1) * cfg.vae_stride[0] + 1
logger.info(f"Generation complete. Processed latent shape: {generated_latent.shape} -> Approx Pixel Video: {processed_pixel_height}x{processed_pixel_width}@{processed_pixel_frames}")
# Note: Final saved dimensions might differ slightly due to concatenation in Extend mode
else:
# --- Latents Mode ---
logger.info("Running in Latent Loading Mode")
original_base_names = []
latents_list = []
seeds = []
metadata = {}
if len(args.latent_path) > 1:
logger.warning("Loading multiple latent files is not fully supported. Using first file's info.")
latent_path = args.latent_path[0]
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
loaded_latent = None
seed = args.seed if args.seed is not None else 0
try:
if os.path.splitext(latent_path)[1] != ".safetensors":
logger.warning("Loading non-safetensors latent file. Metadata might be missing.")
loaded_latent = torch.load(latent_path, map_location="cpu")
if isinstance(loaded_latent, dict):
if "latent" in loaded_latent: loaded_latent = loaded_latent["latent"]
elif "state_dict" in loaded_latent: raise ValueError("Loaded file appears to be a model checkpoint.")
else:
first_key = next(iter(loaded_latent)); loaded_latent = loaded_latent[first_key]
else:
loaded_latent = load_file(latent_path, device="cpu")["latent"]
with safe_open(latent_path, framework="pt", device="cpu") as f: metadata = f.metadata() or {}
logger.info(f"Loaded metadata: {metadata}")
# Restore args from metadata if available
if "seeds" in metadata: seed = int(metadata["seeds"])
if "prompt" in metadata: args.prompt = metadata["prompt"]
if "negative_prompt" in metadata: args.negative_prompt = metadata["negative_prompt"]
# Use metadata dimensions if available, otherwise infer later
if "height" in metadata and "width" in metadata:
height = int(metadata["height"]); width = int(metadata["width"])
args.video_size = [height, width]
if "video_length" in metadata: # This is the length of the *saved* video/latent
video_length = int(metadata["video_length"])
args.video_length = video_length # Store the length of the latent data
# Restore other relevant args...
if "guidance_scale" in metadata: args.guidance_scale = float(metadata["guidance_scale"])
if "infer_steps" in metadata: args.infer_steps = int(metadata["infer_steps"])
if "flow_shift" in metadata: args.flow_shift = float(metadata["flow_shift"])
if "mode" in metadata and metadata["mode"] == "Extend":
if "num_input_frames" in metadata: args.num_input_frames = int(metadata["num_input_frames"])
# Cannot reliably get original frames from latent, so concatenation won't work right
seeds.append(seed)
latents_list.append(loaded_latent)
logger.info(f"Loaded latent from {latent_path}. Shape: {loaded_latent.shape}, dtype: {loaded_latent.dtype}")
except Exception as e:
logger.error(f"Failed to load latent file {latent_path}: {e}")
return
if not latents_list: logger.error("No latent tensors loaded."); return
generated_latent = torch.stack(latents_list, dim=0) # [B, C, F, H, W]
if len(generated_latent.shape) != 5: raise ValueError(f"Loaded latent shape error: {generated_latent.shape}")
args.seed = seeds[0]
# Infer pixel dimensions from latent if not fully set by metadata
if height is None or width is None or video_length is None:
logger.warning("Dimensions not fully found in metadata, inferring from latent shape.")
_, _, lat_f, lat_h, lat_w = generated_latent.shape
height = lat_h * cfg.vae_stride[1]; width = lat_w * cfg.vae_stride[2]
video_length = (lat_f - 1) * cfg.vae_stride[0] + 1 # This is the length corresponding to the latent
logger.info(f"Inferred pixel dimensions from latent: {height}x{width}@{video_length}")
args.video_size = [height, width]; args.video_length = video_length
# --- Decode and Save ---
if generated_latent is not None:
# Decode latent to video tensor [B, C, F, H, W], range [0, 1]
# Note: args.video_length might be different from latent's frame dim if trimmed during decode
decoded_video = decode_latent(generated_latent, args, cfg)
# Save output (handles Extend mode concatenation inside)
save_output(
decoded_video, args,
original_base_names=original_base_names,
latent_to_save=generated_latent if (args.output_type in ["latent", "both"]) else None,
original_input_frames_np=original_input_frames_np # Pass original frames if in Extend mode
)
else:
logger.error("No latent available for decoding and saving.")
logger.info("Done!")
if __name__ == "__main__":
main()