Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Apr 16 19:25:53 2025 | |
Advanced rope functions for Blissful Tuner extension | |
License: Apache 2.0 | |
@author: blyss | |
""" | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from typing import List | |
from blissful_tuner.hvw_posemb_layers import get_nd_rotary_pos_embed | |
# From ComfyUI | |
def apply_rope_comfy(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
# From WanVideoWrapper | |
def rope_riflex(pos, dim, theta, L_test, k, temporal): | |
assert dim % 2 == 0 | |
device = pos.device | |
scale = torch.linspace(0, (dim - 2) / dim, steps=dim // 2, dtype=torch.float64, device=device) | |
omega = 1.0 / (theta**scale) | |
# RIFLEX modification - adjust last frequency component if L_test and k are provided | |
if temporal and k > 0 and L_test: | |
omega[k - 1] = 0.9 * 2 * torch.pi / L_test | |
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega) | |
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) | |
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) | |
return out.to(dtype=torch.float32, device=pos.device) | |
class EmbedND_RifleX(nn.Module): | |
def __init__(self: nn.Module, dim: int, theta: float, axes_dim: List[int], num_frames: int, k: int): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
self.num_frames = num_frames | |
self.k = k | |
def forward(self, ids): | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope_riflex(ids[..., i], self.axes_dim[i], self.theta, self.num_frames, self.k, temporal=True if i == 0 else False) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
# Modified from HunyuanVideo Wrapper | |
def get_rotary_pos_embed_riflex(vae_ver, transformer, latent_video_length, height, width, k=0): | |
if "884" in vae_ver: | |
latents_size = [(latent_video_length - 1) // 4 + 1, height // 8, width // 8] | |
elif "888" in vae_ver: | |
latents_size = [(latent_video_length - 1) // 8 + 1, height // 8, width // 8] | |
else: | |
latents_size = [latent_video_length, height // 8, width // 8] | |
target_ndim = 3 | |
ndim = 5 - 2 | |
rope_theta = 256 # 225 | |
patch_size = transformer.patch_size | |
rope_dim_list = transformer.rope_dim_list | |
hidden_size = transformer.hidden_size | |
heads_num = transformer.heads_num | |
head_dim = hidden_size // heads_num | |
if isinstance(patch_size, int): | |
assert all(s % patch_size == 0 for s in latents_size), ( | |
f"Latent size(last {ndim} dimensions) should be divisible by patch size({patch_size}), " | |
f"but got {latents_size}." | |
) | |
rope_sizes = [s // patch_size for s in latents_size] | |
elif isinstance(patch_size, list): | |
assert all( | |
s % patch_size[idx] == 0 | |
for idx, s in enumerate(latents_size) | |
), ( | |
f"Latent size(last {ndim} dimensions) should be divisible by patch size({patch_size}), " | |
f"but got {latents_size}." | |
) | |
rope_sizes = [ | |
s // patch_size[idx] for idx, s in enumerate(latents_size) | |
] | |
if len(rope_sizes) != target_ndim: | |
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis | |
if rope_dim_list is None: | |
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)] | |
assert ( | |
sum(rope_dim_list) == head_dim | |
), "sum(rope_dim_list) should equal to head_dim of attention layer" | |
freqs_cos, freqs_sin = get_nd_rotary_pos_embed( | |
rope_dim_list, | |
rope_sizes, | |
theta=rope_theta, | |
use_real=True, | |
theta_rescale_factor=1, | |
num_frames=latent_video_length, | |
k=k, | |
) | |
return freqs_cos, freqs_sin | |