File size: 38,545 Bytes
e0336bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
from typing import Optional, Union

import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from accelerate import init_empty_weights

import logging

from utils.safetensors_utils import MemoryEfficientSafeOpen, load_safetensors

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

from utils.device_utils import clean_memory_on_device

from .attention import flash_attention
from utils.device_utils import clean_memory_on_device
from modules.custom_offloading_utils import ModelOffloader
from modules.fp8_optimization_utils import apply_fp8_monkey_patch, optimize_state_dict_with_fp8

__all__ = ["WanModel"]


def sinusoidal_embedding_1d(dim, position):
    # preprocess
    assert dim % 2 == 0
    half = dim // 2
    position = position.type(torch.float64)

    # calculation
    sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    return x


# @amp.autocast(enabled=False)
# no autocast is needed for rope_apply, because it is already in float64
def rope_params(max_seq_len, dim, theta=10000):
    assert dim % 2 == 0
    freqs = torch.outer(torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim)))
    freqs = torch.polar(torch.ones_like(freqs), freqs)
    return freqs


# @amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
    device_type = x.device.type
    with torch.amp.autocast(device_type=device_type, enabled=False):
        n, c = x.size(2), x.size(3) // 2

        # split freqs
        freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)

        # loop over samples
        output = []
        for i, (f, h, w) in enumerate(grid_sizes.tolist()):
            seq_len = f * h * w

            # precompute multipliers
            x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2))
            freqs_i = torch.cat(
                [
                    freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
                    freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
                    freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
                ],
                dim=-1,
            ).reshape(seq_len, 1, -1)

            # apply rotary embedding
            x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
            x_i = torch.cat([x_i, x[i, seq_len:]])

            # append to collection
            output.append(x_i)
        return torch.stack(output).float()


def calculate_freqs_i(fhw, c, freqs):
    f, h, w = fhw
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
    freqs_i = torch.cat(
        [
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(f * h * w, 1, -1)
    return freqs_i


# inplace version of rope_apply
def rope_apply_inplace_cached(x, grid_sizes, freqs_list):
    # with torch.amp.autocast(device_type=device_type, enabled=False):
    rope_dtype = torch.float64  # float32 does not reduce memory usage significantly

    n, c = x.size(2), x.size(3) // 2

    # loop over samples
    for i, (f, h, w) in enumerate(grid_sizes.tolist()):
        seq_len = f * h * w

        # precompute multipliers
        x_i = torch.view_as_complex(x[i, :seq_len].to(rope_dtype).reshape(seq_len, n, -1, 2))
        freqs_i = freqs_list[i]

        # apply rotary embedding
        x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
        # x_i = torch.cat([x_i, x[i, seq_len:]])

        # inplace update
        x[i, :seq_len] = x_i.to(x.dtype)

    return x


class WanRMSNorm(nn.Module):

    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        # return self._norm(x.float()).type_as(x) * self.weight
        # support fp8
        return self._norm(x.float()).type_as(x) * self.weight.to(x.dtype)

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)

    # def forward(self, x):
    #     r"""
    #     Args:
    #         x(Tensor): Shape [B, L, C]
    #     """
    #     # inplace version, also supports fp8 -> does not have significant performance improvement
    #     original_dtype = x.dtype
    #     x = x.float()
    #     y = x.pow(2).mean(dim=-1, keepdim=True)
    #     y.add_(self.eps)
    #     y.rsqrt_()
    #     x *= y
    #     x = x.to(original_dtype)
    #     x *= self.weight.to(original_dtype)
    #     return x


class WanLayerNorm(nn.LayerNorm):

    def __init__(self, dim, eps=1e-6, elementwise_affine=False):
        super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)

    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        return super().forward(x.float()).type_as(x)


class WanSelfAttention(nn.Module):

    def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.eps = eps
        self.attn_mode = attn_mode
        self.split_attn = split_attn

        # layers
        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
        self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

    def forward(self, x, seq_lens, grid_sizes, freqs):
        r"""
        Args:
            x(Tensor): Shape [B, L, num_heads, C / num_heads]
            seq_lens(Tensor): Shape [B]
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim

        # # query, key, value function
        # def qkv_fn(x):
        #     q = self.norm_q(self.q(x)).view(b, s, n, d)
        #     k = self.norm_k(self.k(x)).view(b, s, n, d)
        #     v = self.v(x).view(b, s, n, d)
        #     return q, k, v
        # q, k, v = qkv_fn(x)
        # del x
        # query, key, value function

        q = self.q(x)
        k = self.k(x)
        v = self.v(x)
        del x
        q = self.norm_q(q)
        k = self.norm_k(k)
        q = q.view(b, s, n, d)
        k = k.view(b, s, n, d)
        v = v.view(b, s, n, d)

        rope_apply_inplace_cached(q, grid_sizes, freqs)
        rope_apply_inplace_cached(k, grid_sizes, freqs)
        qkv = [q, k, v]
        del q, k, v
        x = flash_attention(
            qkv, k_lens=seq_lens, window_size=self.window_size, attn_mode=self.attn_mode, split_attn=self.split_attn
        )

        # output
        x = x.flatten(2)
        x = self.o(x)
        return x


class WanT2VCrossAttention(WanSelfAttention):

    def forward(self, x, context, context_lens):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
        """
        b, n, d = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        # q = self.norm_q(self.q(x)).view(b, -1, n, d)
        # k = self.norm_k(self.k(context)).view(b, -1, n, d)
        # v = self.v(context).view(b, -1, n, d)
        q = self.q(x)
        del x
        k = self.k(context)
        v = self.v(context)
        del context
        q = self.norm_q(q)
        k = self.norm_k(k)
        q = q.view(b, -1, n, d)
        k = k.view(b, -1, n, d)
        v = v.view(b, -1, n, d)

        # compute attention
        qkv = [q, k, v]
        del q, k, v
        x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)

        # output
        x = x.flatten(2)
        x = self.o(x)
        return x


class WanI2VCrossAttention(WanSelfAttention):

    def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
        super().__init__(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)

        self.k_img = nn.Linear(dim, dim)
        self.v_img = nn.Linear(dim, dim)
        # self.alpha = nn.Parameter(torch.zeros((1, )))
        self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

    def forward(self, x, context, context_lens):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
        """
        context_img = context[:, :257]
        context = context[:, 257:]
        b, n, d = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.q(x)
        del x
        q = self.norm_q(q)
        q = q.view(b, -1, n, d)
        k = self.k(context)
        k = self.norm_k(k).view(b, -1, n, d)
        v = self.v(context).view(b, -1, n, d)
        del context

        # compute attention
        qkv = [q, k, v]
        del k, v
        x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)

        # compute query, key, value
        k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
        v_img = self.v_img(context_img).view(b, -1, n, d)
        del context_img

        # compute attention
        qkv = [q, k_img, v_img]
        del q, k_img, v_img
        img_x = flash_attention(qkv, k_lens=None, attn_mode=self.attn_mode, split_attn=self.split_attn)

        # output
        x = x.flatten(2)
        img_x = img_x.flatten(2)
        if self.training:
            x = x + img_x  # avoid inplace
        else:
            x += img_x
        del img_x

        x = self.o(x)
        return x


WAN_CROSSATTENTION_CLASSES = {
    "t2v_cross_attn": WanT2VCrossAttention,
    "i2v_cross_attn": WanI2VCrossAttention,
}


class WanAttentionBlock(nn.Module):

    def __init__(
        self,
        cross_attn_type,
        dim,
        ffn_dim,
        num_heads,
        window_size=(-1, -1),
        qk_norm=True,
        cross_attn_norm=False,
        eps=1e-6,
        attn_mode="torch",
        split_attn=False,
    ):
        super().__init__()
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps

        # layers
        self.norm1 = WanLayerNorm(dim, eps)
        self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)
        self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
        self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps, attn_mode, split_attn)
        self.norm2 = WanLayerNorm(dim, eps)
        self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim))

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)

        self.gradient_checkpointing = False

    def enable_gradient_checkpointing(self):
        self.gradient_checkpointing = True

    def disable_gradient_checkpointing(self):
        self.gradient_checkpointing = False

    def _forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
            e(Tensor): Shape [B, 6, C]
            seq_lens(Tensor): Shape [B], length of each sequence in batch
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        assert e.dtype == torch.float32
        # with amp.autocast(dtype=torch.float32):
        #     e = (self.modulation + e).chunk(6, dim=1)
        # support fp8
        e = self.modulation.to(torch.float32) + e
        e = e.chunk(6, dim=1)
        assert e[0].dtype == torch.float32

        # self-attention
        y = self.self_attn(self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs)
        # with amp.autocast(dtype=torch.float32):
        #     x = x + y * e[2]
        x = x + y.to(torch.float32) * e[2]
        del y

        # cross-attention & ffn function
        # def cross_attn_ffn(x, context, context_lens, e):
        #     x += self.cross_attn(self.norm3(x), context, context_lens)
        #     y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
        #     # with amp.autocast(dtype=torch.float32):
        #     #     x = x + y * e[5]
        #     x += y.to(torch.float32) * e[5]
        #     return x
        # x = cross_attn_ffn(x, context, context_lens, e)

        # x += self.cross_attn(self.norm3(x), context, context_lens) # backward error
        x = x + self.cross_attn(self.norm3(x), context, context_lens)
        del context
        y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
        x = x + y.to(torch.float32) * e[5]
        del y
        return x

    def forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
        if self.training and self.gradient_checkpointing:
            return checkpoint(self._forward, x, e, seq_lens, grid_sizes, freqs, context, context_lens, use_reentrant=False)
        return self._forward(x, e, seq_lens, grid_sizes, freqs, context, context_lens)


class Head(nn.Module):

    def __init__(self, dim, out_dim, patch_size, eps=1e-6):
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim
        self.patch_size = patch_size
        self.eps = eps

        # layers
        out_dim = math.prod(patch_size) * out_dim
        self.norm = WanLayerNorm(dim, eps)
        self.head = nn.Linear(dim, out_dim)

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)

    def forward(self, x, e):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            e(Tensor): Shape [B, C]
        """
        assert e.dtype == torch.float32
        # with amp.autocast(dtype=torch.float32):
        #     e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
        #     x = self.head(self.norm(x) * (1 + e[1]) + e[0])
        # support fp8
        e = (self.modulation.to(torch.float32) + e.unsqueeze(1)).chunk(2, dim=1)
        x = self.head(self.norm(x) * (1 + e[1]) + e[0])
        return x


class MLPProj(torch.nn.Module):

    def __init__(self, in_dim, out_dim):
        super().__init__()

        self.proj = torch.nn.Sequential(
            torch.nn.LayerNorm(in_dim),
            torch.nn.Linear(in_dim, in_dim),
            torch.nn.GELU(),
            torch.nn.Linear(in_dim, out_dim),
            torch.nn.LayerNorm(out_dim),
        )

    def forward(self, image_embeds):
        clip_extra_context_tokens = self.proj(image_embeds)
        return clip_extra_context_tokens


class WanModel(nn.Module):  # ModelMixin, ConfigMixin):
    r"""
    Wan diffusion backbone supporting both text-to-video and image-to-video.
    """

    ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"]
    _no_split_modules = ["WanAttentionBlock"]

    # @register_to_config
    def __init__(
        self,
        model_type="t2v",
        patch_size=(1, 2, 2),
        text_len=512,
        in_dim=16,
        dim=2048,
        ffn_dim=8192,
        freq_dim=256,
        text_dim=4096,
        out_dim=16,
        num_heads=16,
        num_layers=32,
        window_size=(-1, -1),
        qk_norm=True,
        cross_attn_norm=True,
        eps=1e-6,
        attn_mode=None,
        split_attn=False,
        add_ref_conv=False, 
        in_dim_ref_conv=16,
    ):
        r"""
        Initialize the diffusion model backbone.

        Args:
            model_type (`str`, *optional*, defaults to 't2v'):
                Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
            patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
                3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
            text_len (`int`, *optional*, defaults to 512):
                Fixed length for text embeddings
            in_dim (`int`, *optional*, defaults to 16):
                Input video channels (C_in)
            dim (`int`, *optional*, defaults to 2048):
                Hidden dimension of the transformer
            ffn_dim (`int`, *optional*, defaults to 8192):
                Intermediate dimension in feed-forward network
            freq_dim (`int`, *optional*, defaults to 256):
                Dimension for sinusoidal time embeddings
            text_dim (`int`, *optional*, defaults to 4096):
                Input dimension for text embeddings
            out_dim (`int`, *optional*, defaults to 16):
                Output video channels (C_out)
            num_heads (`int`, *optional*, defaults to 16):
                Number of attention heads
            num_layers (`int`, *optional*, defaults to 32):
                Number of transformer blocks
            window_size (`tuple`, *optional*, defaults to (-1, -1)):
                Window size for local attention (-1 indicates global attention)
            qk_norm (`bool`, *optional*, defaults to True):
                Enable query/key normalization
            cross_attn_norm (`bool`, *optional*, defaults to False):
                Enable cross-attention normalization
            eps (`float`, *optional*, defaults to 1e-6):
                Epsilon value for normalization layers
        """

        super().__init__()

        assert model_type in ["t2v", "i2v"]
        self.model_type = model_type

        self.patch_size = patch_size
        self.text_len = text_len
        self.in_dim = in_dim
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.freq_dim = freq_dim
        self.text_dim = text_dim
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps
        self.attn_mode = attn_mode if attn_mode is not None else "torch"
        self.split_attn = split_attn

        # embeddings
        self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size)
        self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim))

        self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
        self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))

        # blocks
        cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
        self.blocks = nn.ModuleList(
            [
                WanAttentionBlock(
                    cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, attn_mode, split_attn
                )
                for _ in range(num_layers)
            ]
        )

        # head
        self.head = Head(dim, out_dim, patch_size, eps)

        # buffers (don't use register_buffer otherwise dtype will be changed in to())
        assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
        d = dim // num_heads
        self.freqs = torch.cat(
            [rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))], dim=1
        )
        self.freqs_fhw = {}

        if model_type == "i2v":
            self.img_emb = MLPProj(1280, dim)

        self.add_ref_conv = add_ref_conv # Store the flag
        if add_ref_conv:
            # Use spatial dimensions from patch_size for Conv2d
            self.ref_conv = nn.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:])
            logger.info(f"Initialized ref_conv layer with in_channels={in_dim_ref_conv}, out_channels={dim}")
        else:
            self.ref_conv = None            

        # initialize weights
        self.init_weights()

        self.gradient_checkpointing = False

        # offloading
        self.blocks_to_swap = None
        self.offloader = None

    @property
    def dtype(self):
        return next(self.parameters()).dtype

    @property
    def device(self):
        return next(self.parameters()).device

    def fp8_optimization(
        self, state_dict: dict[str, torch.Tensor], device: torch.device, move_to_device: bool, use_scaled_mm: bool = False
    ) -> int:
        """
        Optimize the model state_dict with fp8.

        Args:
            state_dict (dict[str, torch.Tensor]):
                The state_dict of the model.
            device (torch.device):
                The device to calculate the weight.
            move_to_device (bool):
                Whether to move the weight to the device after optimization.
        """
        TARGET_KEYS = ["blocks"]
        EXCLUDE_KEYS = [
            "norm",
            "patch_embedding",
            "text_embedding",
            "time_embedding",
            "time_projection",
            "head",
            "modulation",
            "img_emb",
        ]

        # inplace optimization
        state_dict = optimize_state_dict_with_fp8(state_dict, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device)

        # apply monkey patching
        apply_fp8_monkey_patch(self, state_dict, use_scaled_mm=use_scaled_mm)

        return state_dict

    def enable_gradient_checkpointing(self):
        self.gradient_checkpointing = True

        for block in self.blocks:
            block.enable_gradient_checkpointing()

        print(f"WanModel: Gradient checkpointing enabled.")

    def disable_gradient_checkpointing(self):
        self.gradient_checkpointing = False

        for block in self.blocks:
            block.disable_gradient_checkpointing()

        print(f"WanModel: Gradient checkpointing disabled.")

    def enable_block_swap(self, blocks_to_swap: int, device: torch.device, supports_backward: bool):
        self.blocks_to_swap = blocks_to_swap
        self.num_blocks = len(self.blocks)

        assert (
            self.blocks_to_swap <= self.num_blocks - 1
        ), f"Cannot swap more than {self.num_blocks - 1} blocks. Requested {self.blocks_to_swap} blocks to swap."

        self.offloader = ModelOffloader(
            "wan_attn_block", self.blocks, self.num_blocks, self.blocks_to_swap, supports_backward, device  # , debug=True
        )
        print(
            f"WanModel: Block swap enabled. Swapping {self.blocks_to_swap} blocks out of {self.num_blocks} blocks. Supports backward: {supports_backward}"
        )

    def switch_block_swap_for_inference(self):
        if self.blocks_to_swap:
            self.offloader.set_forward_only(True)
            self.prepare_block_swap_before_forward()
            print(f"WanModel: Block swap set to forward only.")

    def switch_block_swap_for_training(self):
        if self.blocks_to_swap:
            self.offloader.set_forward_only(False)
            self.prepare_block_swap_before_forward()
            print(f"WanModel: Block swap set to forward and backward.")

    def move_to_device_except_swap_blocks(self, device: torch.device):
        # assume model is on cpu. do not move blocks to device to reduce temporary memory usage
        if self.blocks_to_swap:
            save_blocks = self.blocks
            self.blocks = None

        self.to(device)

        if self.blocks_to_swap:
            self.blocks = save_blocks

    def prepare_block_swap_before_forward(self):
        if self.blocks_to_swap is None or self.blocks_to_swap == 0:
            return
        self.offloader.prepare_block_devices_before_forward(self.blocks)

    def forward(self, x, t, context, seq_len, clip_fea=None, y=None, skip_block_indices=None, fun_ref=None):
        r"""
        Forward pass through the diffusion model

        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        # remove assertions to work with Fun-Control T2V
        # if self.model_type == "i2v":
        #     assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)

        if isinstance(x, list) and len(x) > 0:
             _, F_orig, H_orig, W_orig = x[0].shape
        else:
             # Fallback or error handling if x is not as expected
             raise ValueError("Input x is not in the expected list format.")            

        if y is not None:
            print('WanModel concat debug:')
            for i, (u, v) in enumerate(zip(x, y)):
                print(f"x[{i}]: {u.shape}, y[{i}]: {v.shape}, y[{i}].dim(): {v.dim()}")
            x = [
                torch.cat([u, v], dim=0)
                for u, v in zip(x, y)
            ]
            y = None
        

        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
        grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x])

        # <<< START: Process fun_ref if applicable >>>
        F = F_orig # Use original frame count for RoPE calculation unless fun_ref modifies it
        if self.ref_conv is not None and fun_ref is not None:
            # fun_ref is expected to be the raw reference image latent [B, C_ref, H_ref, W_ref]
            # Ensure it's on the correct device
            fun_ref = fun_ref.to(device)
            logger.debug(f"Processing fun_ref with shape: {fun_ref.shape}")

            # Apply the 2D convolution
            # Note: fun_ref needs batch dim for Conv2d, add if missing
            if fun_ref.dim() == 3: fun_ref = fun_ref.unsqueeze(0)
            processed_ref = self.ref_conv(fun_ref) # Output: [B, C, H_out, W_out]
            logger.debug(f"Processed ref_conv output shape: {processed_ref.shape}")

            # Reshape to token sequence: [B, L_ref, C]
            processed_ref = processed_ref.flatten(2).transpose(1, 2)
            logger.debug(f"Reshaped processed_ref shape: {processed_ref.shape}")

            # Adjust grid_sizes, seq_len, and F to account for the prepended tokens
            # Assuming the reference adds effectively one "frame" worth of tokens spatially
            # Note: This might need adjustment depending on how seq_len is used later.
            # We increment the frame dimension 'F' in grid_sizes.
            grid_sizes = torch.stack([torch.tensor([gs[0] + 1, gs[1], gs[2]], dtype=torch.long) for gs in grid_sizes]).to(grid_sizes.device)
            seq_len += processed_ref.size(1) # Add number of reference tokens
            F = F_orig + 1 # Indicate one extra effective frame for RoPE/freq calculation
            logger.debug(f"Adjusted grid_sizes: {grid_sizes}, seq_len: {seq_len}, F for RoPE: {F}")

            # Prepend the reference tokens to each element in the list x
            x = [torch.cat([processed_ref, u.flatten(2).transpose(1, 2)], dim=1) for u in x] # x was already flattened+transposed below, do it here
            # x is now list of [B, L_new, C]
        else:
            # Original flattening if no fun_ref
            x = [u.flatten(2).transpose(1, 2) for u in x]     
        # <<< END: Process fun_ref if applicable >>>               

        freqs_list = []
        for fhw in grid_sizes: # Use the potentially updated grid_sizes
            fhw_tuple = tuple(fhw.tolist())
            if fhw_tuple not in self.freqs_fhw:
                c_rope = self.dim // self.num_heads // 2
                # Use the potentially updated frame count F from fhw[0]
                self.freqs_fhw[fhw_tuple] = calculate_freqs_i(fhw, c_rope, self.freqs)
            freqs_list.append(self.freqs_fhw[fhw_tuple])

        # ... (seq_len calculation and padding using potentially updated seq_len) ...
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        if seq_lens.max() > seq_len:
             # This might happen if seq_len wasn't updated correctly or padding logic needs review
             logger.warning(f"Calculated seq_lens.max()={seq_lens.max()} > adjusted seq_len={seq_len}. Adjusting seq_len.")
             seq_len = seq_lens.max().item() # Use the actual max length required

        x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])

        # time embeddings
        # with amp.autocast(dtype=torch.float32):
        with torch.amp.autocast(device_type=device.type, dtype=torch.float32):
            e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float())
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))
            assert e.dtype == torch.float32 and e0.dtype == torch.float32

        # context
        context_lens = None
        if type(context) is list:
            context = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context])
        context = self.text_embedding(context)

        if clip_fea is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)
            clip_fea = None
            context_clip = None

        # arguments
        kwargs = dict(e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=freqs_list, context=context, context_lens=context_lens)

        if self.blocks_to_swap:
            clean_memory_on_device(device)

        # print(f"x: {x.shape}, e: {e0.shape}, context: {context.shape}, seq_lens: {seq_lens}")
        for block_idx, block in enumerate(self.blocks):
            is_block_skipped = skip_block_indices is not None and block_idx in skip_block_indices

            if self.blocks_to_swap and not is_block_skipped:
                self.offloader.wait_for_block(block_idx)

            if not is_block_skipped:
                x = block(x, **kwargs)

            if self.blocks_to_swap:
                self.offloader.submit_move_blocks_forward(self.blocks, block_idx)

        if self.ref_conv is not None and fun_ref is not None:
            num_ref_tokens = processed_ref.size(1)
            logger.debug(f"Removing {num_ref_tokens} prepended reference tokens before head.")
            x = x[:, num_ref_tokens:, :]
            # Restore original grid_sizes F dimension for unpatchify
            grid_sizes = torch.stack([torch.tensor([gs[0] - 1, gs[1], gs[2]], dtype=torch.long) for gs in grid_sizes]).to(grid_sizes.device)                

        # head
        x = self.head(x, e)

        # unpatchify
        x = self.unpatchify(x, grid_sizes)
        return [u.float() for u in x]

    def unpatchify(self, x, grid_sizes):
        r"""
        Reconstruct video tensors from patch embeddings.

        Args:
            x (List[Tensor]):
                List of patchified features, each with shape [L, C_out * prod(patch_size)]
            grid_sizes (Tensor):
                Original spatial-temporal grid dimensions before patching,
                    shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)

        Returns:
            List[Tensor]:
                Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
        """

        c = self.out_dim
        out = []
        for u, v in zip(x, grid_sizes.tolist()):
            u = u[: math.prod(v)].view(*v, *self.patch_size, c)
            u = torch.einsum("fhwpqrc->cfphqwr", u)
            u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
            out.append(u)
        return out

    def init_weights(self):
        r"""
        Initialize model parameters using Xavier initialization.
        """

        # basic init
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

        # init embeddings
        nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
        for m in self.text_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=0.02)
        for m in self.time_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=0.02)

        # init output layer
        nn.init.zeros_(self.head.head.weight)


def detect_wan_sd_dtype(path: str) -> torch.dtype:
    # get dtype from model weights
    with MemoryEfficientSafeOpen(path) as f:
        keys = set(f.keys())
        key1 = "model.diffusion_model.blocks.0.cross_attn.k.weight"  # 1.3B
        key2 = "blocks.0.cross_attn.k.weight"  # 14B
        if key1 in keys:
            dit_dtype = f.get_tensor(key1).dtype
        elif key2 in keys:
            dit_dtype = f.get_tensor(key2).dtype
        else:
            raise ValueError(f"Could not find the dtype in the model weights: {path}")
    logger.info(f"Detected DiT dtype: {dit_dtype}")
    return dit_dtype


def load_wan_model(
    config: any,
    device: Union[str, torch.device],
    dit_path: str,
    attn_mode: str,
    split_attn: bool,
    loading_device: Union[str, torch.device],
    dit_weight_dtype: Optional[torch.dtype],
    fp8_scaled: bool = False,
) -> WanModel:
    # dit_weight_dtype is None for fp8_scaled
    assert (not fp8_scaled and dit_weight_dtype is not None) or (fp8_scaled and dit_weight_dtype is None)

    device = torch.device(device)
    loading_device = torch.device(loading_device)

    wan_loading_device = torch.device("cpu") if fp8_scaled else loading_device
    logger.info(f"Loading DiT model state dict from {dit_path}, device={wan_loading_device}, dtype={dit_weight_dtype}")
    sd = load_safetensors(dit_path, wan_loading_device, disable_mmap=True, dtype=dit_weight_dtype)

    # remove "model.diffusion_model." prefix: 1.3B model has this prefix
    sd_keys = list(sd.keys()) # Keep original keys for potential prefix removal
    for key in sd_keys:
        if key.startswith("model.diffusion_model."):
            sd[key[22:]] = sd.pop(key)

    # Check for ref_conv layer weights
    has_ref_conv = "ref_conv.weight" in sd
    in_dim_ref_conv = sd["ref_conv.weight"].shape[1] if has_ref_conv else 16 # Default if not found
    if has_ref_conv:
        logger.info(f"Detected ref_conv layer in model weights. Input channels: {in_dim_ref_conv}")    

    with init_empty_weights():
        logger.info(f"Creating WanModel")
        model = WanModel(
            model_type="i2v" if config.i2v else "t2v",
            dim=config.dim,
            eps=config.eps,
            ffn_dim=config.ffn_dim,
            freq_dim=config.freq_dim,
            in_dim=config.in_dim,
            num_heads=config.num_heads,
            num_layers=config.num_layers,
            out_dim=config.out_dim,
            text_len=config.text_len,
            attn_mode=attn_mode,
            split_attn=split_attn,
            add_ref_conv=has_ref_conv,             # <<< Pass detected flag
            in_dim_ref_conv=in_dim_ref_conv,             
        )
        if dit_weight_dtype is not None and not fp8_scaled: # Don't pre-cast if optimizing to FP8 later
            model.to(dit_weight_dtype)

    # ... (fp8 optimization - sd is already loaded) ...
    if fp8_scaled:
        # fp8 optimization: calculate on CUDA, move back to CPU if loading_device is CPU (block swap)
        logger.info(f"Optimizing model weights to fp8. This may take a while.")
        sd = model.fp8_optimization(sd, device, move_to_device=loading_device.type == "cpu")

        if loading_device.type != "cpu":
            # make sure all the model weights are on the loading_device
            logger.info(f"Moving weights to {loading_device}")
            for key in sd.keys():
                sd[key] = sd[key].to(loading_device)

    # Load the potentially modified state dict
    # Use strict=False initially if ref_conv might be missing in older models but present in the class
    # After confirming your models, you might set strict=True if all target models have the layer or None.
    info = model.load_state_dict(sd, strict=False, assign=True)
    logger.info(f"Loaded DiT model from {dit_path}, info={info}")
    if not info.missing_keys and not info.unexpected_keys:
         logger.info("State dict loaded successfully (strict check passed).")
    else:
         logger.warning(f"State dict load info: Missing={info.missing_keys}, Unexpected={info.unexpected_keys}")
         # If add_ref_conv is True but ref_conv keys are missing, it's an issue.
         if has_ref_conv and any("ref_conv" in k for k in info.missing_keys):
              raise ValueError("Model configuration indicates ref_conv=True, but weights are missing!")
         # If add_ref_conv is False but ref_conv keys are unexpected, it's also an issue with model/config mismatch.
         if not has_ref_conv and any("ref_conv" in k for k in info.unexpected_keys):
              raise ValueError("Model configuration indicates ref_conv=False, but weights are present!")


    return model