Spaces:
Running
Running
File size: 38,545 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
from typing import Optional, Union
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from accelerate import init_empty_weights
import logging
from utils.safetensors_utils import MemoryEfficientSafeOpen, load_safetensors
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from utils.device_utils import clean_memory_on_device
from .attention import flash_attention
from utils.device_utils import clean_memory_on_device
from modules.custom_offloading_utils import ModelOffloader
from modules.fp8_optimization_utils import apply_fp8_monkey_patch, optimize_state_dict_with_fp8
__all__ = ["WanModel"]
def sinusoidal_embedding_1d(dim, position):
# preprocess
assert dim % 2 == 0
half = dim // 2
position = position.type(torch.float64)
# calculation
sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x
# @amp.autocast(enabled=False)
# no autocast is needed for rope_apply, because it is already in float64
def rope_params(max_seq_len, dim, theta=10000):
assert dim % 2 == 0
freqs = torch.outer(torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim)))
freqs = torch.polar(torch.ones_like(freqs), freqs)
return freqs
# @amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
device_type = x.device.type
with torch.amp.autocast(device_type=device_type, enabled=False):
n, c = x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(seq_len, n, -1, 2))
freqs_i = torch.cat(
[
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
).reshape(seq_len, 1, -1)
# apply rotary embedding
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
x_i = torch.cat([x_i, x[i, seq_len:]])
# append to collection
output.append(x_i)
return torch.stack(output).float()
def calculate_freqs_i(fhw, c, freqs):
f, h, w = fhw
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
freqs_i = torch.cat(
[
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
).reshape(f * h * w, 1, -1)
return freqs_i
# inplace version of rope_apply
def rope_apply_inplace_cached(x, grid_sizes, freqs_list):
# with torch.amp.autocast(device_type=device_type, enabled=False):
rope_dtype = torch.float64 # float32 does not reduce memory usage significantly
n, c = x.size(2), x.size(3) // 2
# loop over samples
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :seq_len].to(rope_dtype).reshape(seq_len, n, -1, 2))
freqs_i = freqs_list[i]
# apply rotary embedding
x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
# x_i = torch.cat([x_i, x[i, seq_len:]])
# inplace update
x[i, :seq_len] = x_i.to(x.dtype)
return x
class WanRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
# return self._norm(x.float()).type_as(x) * self.weight
# support fp8
return self._norm(x.float()).type_as(x) * self.weight.to(x.dtype)
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
# def forward(self, x):
# r"""
# Args:
# x(Tensor): Shape [B, L, C]
# """
# # inplace version, also supports fp8 -> does not have significant performance improvement
# original_dtype = x.dtype
# x = x.float()
# y = x.pow(2).mean(dim=-1, keepdim=True)
# y.add_(self.eps)
# y.rsqrt_()
# x *= y
# x = x.to(original_dtype)
# x *= self.weight.to(original_dtype)
# return x
class WanLayerNorm(nn.LayerNorm):
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
return super().forward(x.float()).type_as(x)
class WanSelfAttention(nn.Module):
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
self.attn_mode = attn_mode
self.split_attn = split_attn
# layers
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, seq_lens, grid_sizes, freqs):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
seq_lens(Tensor): Shape [B]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# # query, key, value function
# def qkv_fn(x):
# q = self.norm_q(self.q(x)).view(b, s, n, d)
# k = self.norm_k(self.k(x)).view(b, s, n, d)
# v = self.v(x).view(b, s, n, d)
# return q, k, v
# q, k, v = qkv_fn(x)
# del x
# query, key, value function
q = self.q(x)
k = self.k(x)
v = self.v(x)
del x
q = self.norm_q(q)
k = self.norm_k(k)
q = q.view(b, s, n, d)
k = k.view(b, s, n, d)
v = v.view(b, s, n, d)
rope_apply_inplace_cached(q, grid_sizes, freqs)
rope_apply_inplace_cached(k, grid_sizes, freqs)
qkv = [q, k, v]
del q, k, v
x = flash_attention(
qkv, k_lens=seq_lens, window_size=self.window_size, attn_mode=self.attn_mode, split_attn=self.split_attn
)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context, context_lens):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
# q = self.norm_q(self.q(x)).view(b, -1, n, d)
# k = self.norm_k(self.k(context)).view(b, -1, n, d)
# v = self.v(context).view(b, -1, n, d)
q = self.q(x)
del x
k = self.k(context)
v = self.v(context)
del context
q = self.norm_q(q)
k = self.norm_k(k)
q = q.view(b, -1, n, d)
k = k.view(b, -1, n, d)
v = v.view(b, -1, n, d)
# compute attention
qkv = [q, k, v]
del q, k, v
x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, attn_mode="torch", split_attn=False):
super().__init__(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, context, context_lens):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
context_img = context[:, :257]
context = context[:, 257:]
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.q(x)
del x
q = self.norm_q(q)
q = q.view(b, -1, n, d)
k = self.k(context)
k = self.norm_k(k).view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
del context
# compute attention
qkv = [q, k, v]
del k, v
x = flash_attention(qkv, k_lens=context_lens, attn_mode=self.attn_mode, split_attn=self.split_attn)
# compute query, key, value
k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
v_img = self.v_img(context_img).view(b, -1, n, d)
del context_img
# compute attention
qkv = [q, k_img, v_img]
del q, k_img, v_img
img_x = flash_attention(qkv, k_lens=None, attn_mode=self.attn_mode, split_attn=self.split_attn)
# output
x = x.flatten(2)
img_x = img_x.flatten(2)
if self.training:
x = x + img_x # avoid inplace
else:
x += img_x
del img_x
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
"t2v_cross_attn": WanT2VCrossAttention,
"i2v_cross_attn": WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
attn_mode="torch",
split_attn=False,
):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps, attn_mode, split_attn)
self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps, attn_mode, split_attn)
self.norm2 = WanLayerNorm(dim, eps)
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim))
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
self.gradient_checkpointing = False
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
def _forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
seq_lens(Tensor): Shape [B], length of each sequence in batch
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
# e = (self.modulation + e).chunk(6, dim=1)
# support fp8
e = self.modulation.to(torch.float32) + e
e = e.chunk(6, dim=1)
assert e[0].dtype == torch.float32
# self-attention
y = self.self_attn(self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes, freqs)
# with amp.autocast(dtype=torch.float32):
# x = x + y * e[2]
x = x + y.to(torch.float32) * e[2]
del y
# cross-attention & ffn function
# def cross_attn_ffn(x, context, context_lens, e):
# x += self.cross_attn(self.norm3(x), context, context_lens)
# y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
# # with amp.autocast(dtype=torch.float32):
# # x = x + y * e[5]
# x += y.to(torch.float32) * e[5]
# return x
# x = cross_attn_ffn(x, context, context_lens, e)
# x += self.cross_attn(self.norm3(x), context, context_lens) # backward error
x = x + self.cross_attn(self.norm3(x), context, context_lens)
del context
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
x = x + y.to(torch.float32) * e[5]
del y
return x
def forward(self, x, e, seq_lens, grid_sizes, freqs, context, context_lens):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, x, e, seq_lens, grid_sizes, freqs, context, context_lens, use_reentrant=False)
return self._forward(x, e, seq_lens, grid_sizes, freqs, context, context_lens)
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_dim)
# modulation
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, C]
"""
assert e.dtype == torch.float32
# with amp.autocast(dtype=torch.float32):
# e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
# x = self.head(self.norm(x) * (1 + e[1]) + e[0])
# support fp8
e = (self.modulation.to(torch.float32) + e.unsqueeze(1)).chunk(2, dim=1)
x = self.head(self.norm(x) * (1 + e[1]) + e[0])
return x
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.LayerNorm(in_dim),
torch.nn.Linear(in_dim, in_dim),
torch.nn.GELU(),
torch.nn.Linear(in_dim, out_dim),
torch.nn.LayerNorm(out_dim),
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class WanModel(nn.Module): # ModelMixin, ConfigMixin):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"]
_no_split_modules = ["WanAttentionBlock"]
# @register_to_config
def __init__(
self,
model_type="t2v",
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
attn_mode=None,
split_attn=False,
add_ref_conv=False,
in_dim_ref_conv=16,
):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
assert model_type in ["t2v", "i2v"]
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
self.attn_mode = attn_mode if attn_mode is not None else "torch"
self.split_attn = split_attn
# embeddings
self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim))
self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
self.blocks = nn.ModuleList(
[
WanAttentionBlock(
cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, attn_mode, split_attn
)
for _ in range(num_layers)
]
)
# head
self.head = Head(dim, out_dim, patch_size, eps)
# buffers (don't use register_buffer otherwise dtype will be changed in to())
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads
self.freqs = torch.cat(
[rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))], dim=1
)
self.freqs_fhw = {}
if model_type == "i2v":
self.img_emb = MLPProj(1280, dim)
self.add_ref_conv = add_ref_conv # Store the flag
if add_ref_conv:
# Use spatial dimensions from patch_size for Conv2d
self.ref_conv = nn.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:])
logger.info(f"Initialized ref_conv layer with in_channels={in_dim_ref_conv}, out_channels={dim}")
else:
self.ref_conv = None
# initialize weights
self.init_weights()
self.gradient_checkpointing = False
# offloading
self.blocks_to_swap = None
self.offloader = None
@property
def dtype(self):
return next(self.parameters()).dtype
@property
def device(self):
return next(self.parameters()).device
def fp8_optimization(
self, state_dict: dict[str, torch.Tensor], device: torch.device, move_to_device: bool, use_scaled_mm: bool = False
) -> int:
"""
Optimize the model state_dict with fp8.
Args:
state_dict (dict[str, torch.Tensor]):
The state_dict of the model.
device (torch.device):
The device to calculate the weight.
move_to_device (bool):
Whether to move the weight to the device after optimization.
"""
TARGET_KEYS = ["blocks"]
EXCLUDE_KEYS = [
"norm",
"patch_embedding",
"text_embedding",
"time_embedding",
"time_projection",
"head",
"modulation",
"img_emb",
]
# inplace optimization
state_dict = optimize_state_dict_with_fp8(state_dict, device, TARGET_KEYS, EXCLUDE_KEYS, move_to_device=move_to_device)
# apply monkey patching
apply_fp8_monkey_patch(self, state_dict, use_scaled_mm=use_scaled_mm)
return state_dict
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
for block in self.blocks:
block.enable_gradient_checkpointing()
print(f"WanModel: Gradient checkpointing enabled.")
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
for block in self.blocks:
block.disable_gradient_checkpointing()
print(f"WanModel: Gradient checkpointing disabled.")
def enable_block_swap(self, blocks_to_swap: int, device: torch.device, supports_backward: bool):
self.blocks_to_swap = blocks_to_swap
self.num_blocks = len(self.blocks)
assert (
self.blocks_to_swap <= self.num_blocks - 1
), f"Cannot swap more than {self.num_blocks - 1} blocks. Requested {self.blocks_to_swap} blocks to swap."
self.offloader = ModelOffloader(
"wan_attn_block", self.blocks, self.num_blocks, self.blocks_to_swap, supports_backward, device # , debug=True
)
print(
f"WanModel: Block swap enabled. Swapping {self.blocks_to_swap} blocks out of {self.num_blocks} blocks. Supports backward: {supports_backward}"
)
def switch_block_swap_for_inference(self):
if self.blocks_to_swap:
self.offloader.set_forward_only(True)
self.prepare_block_swap_before_forward()
print(f"WanModel: Block swap set to forward only.")
def switch_block_swap_for_training(self):
if self.blocks_to_swap:
self.offloader.set_forward_only(False)
self.prepare_block_swap_before_forward()
print(f"WanModel: Block swap set to forward and backward.")
def move_to_device_except_swap_blocks(self, device: torch.device):
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage
if self.blocks_to_swap:
save_blocks = self.blocks
self.blocks = None
self.to(device)
if self.blocks_to_swap:
self.blocks = save_blocks
def prepare_block_swap_before_forward(self):
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
self.offloader.prepare_block_devices_before_forward(self.blocks)
def forward(self, x, t, context, seq_len, clip_fea=None, y=None, skip_block_indices=None, fun_ref=None):
r"""
Forward pass through the diffusion model
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
# remove assertions to work with Fun-Control T2V
# if self.model_type == "i2v":
# assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
if isinstance(x, list) and len(x) > 0:
_, F_orig, H_orig, W_orig = x[0].shape
else:
# Fallback or error handling if x is not as expected
raise ValueError("Input x is not in the expected list format.")
if y is not None:
print('WanModel concat debug:')
for i, (u, v) in enumerate(zip(x, y)):
print(f"x[{i}]: {u.shape}, y[{i}]: {v.shape}, y[{i}].dim(): {v.dim()}")
x = [
torch.cat([u, v], dim=0)
for u, v in zip(x, y)
]
y = None
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack([torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
# <<< START: Process fun_ref if applicable >>>
F = F_orig # Use original frame count for RoPE calculation unless fun_ref modifies it
if self.ref_conv is not None and fun_ref is not None:
# fun_ref is expected to be the raw reference image latent [B, C_ref, H_ref, W_ref]
# Ensure it's on the correct device
fun_ref = fun_ref.to(device)
logger.debug(f"Processing fun_ref with shape: {fun_ref.shape}")
# Apply the 2D convolution
# Note: fun_ref needs batch dim for Conv2d, add if missing
if fun_ref.dim() == 3: fun_ref = fun_ref.unsqueeze(0)
processed_ref = self.ref_conv(fun_ref) # Output: [B, C, H_out, W_out]
logger.debug(f"Processed ref_conv output shape: {processed_ref.shape}")
# Reshape to token sequence: [B, L_ref, C]
processed_ref = processed_ref.flatten(2).transpose(1, 2)
logger.debug(f"Reshaped processed_ref shape: {processed_ref.shape}")
# Adjust grid_sizes, seq_len, and F to account for the prepended tokens
# Assuming the reference adds effectively one "frame" worth of tokens spatially
# Note: This might need adjustment depending on how seq_len is used later.
# We increment the frame dimension 'F' in grid_sizes.
grid_sizes = torch.stack([torch.tensor([gs[0] + 1, gs[1], gs[2]], dtype=torch.long) for gs in grid_sizes]).to(grid_sizes.device)
seq_len += processed_ref.size(1) # Add number of reference tokens
F = F_orig + 1 # Indicate one extra effective frame for RoPE/freq calculation
logger.debug(f"Adjusted grid_sizes: {grid_sizes}, seq_len: {seq_len}, F for RoPE: {F}")
# Prepend the reference tokens to each element in the list x
x = [torch.cat([processed_ref, u.flatten(2).transpose(1, 2)], dim=1) for u in x] # x was already flattened+transposed below, do it here
# x is now list of [B, L_new, C]
else:
# Original flattening if no fun_ref
x = [u.flatten(2).transpose(1, 2) for u in x]
# <<< END: Process fun_ref if applicable >>>
freqs_list = []
for fhw in grid_sizes: # Use the potentially updated grid_sizes
fhw_tuple = tuple(fhw.tolist())
if fhw_tuple not in self.freqs_fhw:
c_rope = self.dim // self.num_heads // 2
# Use the potentially updated frame count F from fhw[0]
self.freqs_fhw[fhw_tuple] = calculate_freqs_i(fhw, c_rope, self.freqs)
freqs_list.append(self.freqs_fhw[fhw_tuple])
# ... (seq_len calculation and padding using potentially updated seq_len) ...
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
if seq_lens.max() > seq_len:
# This might happen if seq_len wasn't updated correctly or padding logic needs review
logger.warning(f"Calculated seq_lens.max()={seq_lens.max()} > adjusted seq_len={seq_len}. Adjusting seq_len.")
seq_len = seq_lens.max().item() # Use the actual max length required
x = torch.cat([torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x])
# time embeddings
# with amp.autocast(dtype=torch.float32):
with torch.amp.autocast(device_type=device.type, dtype=torch.float32):
e = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
if type(context) is list:
context = torch.stack([torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context])
context = self.text_embedding(context)
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
clip_fea = None
context_clip = None
# arguments
kwargs = dict(e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=freqs_list, context=context, context_lens=context_lens)
if self.blocks_to_swap:
clean_memory_on_device(device)
# print(f"x: {x.shape}, e: {e0.shape}, context: {context.shape}, seq_lens: {seq_lens}")
for block_idx, block in enumerate(self.blocks):
is_block_skipped = skip_block_indices is not None and block_idx in skip_block_indices
if self.blocks_to_swap and not is_block_skipped:
self.offloader.wait_for_block(block_idx)
if not is_block_skipped:
x = block(x, **kwargs)
if self.blocks_to_swap:
self.offloader.submit_move_blocks_forward(self.blocks, block_idx)
if self.ref_conv is not None and fun_ref is not None:
num_ref_tokens = processed_ref.size(1)
logger.debug(f"Removing {num_ref_tokens} prepended reference tokens before head.")
x = x[:, num_ref_tokens:, :]
# Restore original grid_sizes F dimension for unpatchify
grid_sizes = torch.stack([torch.tensor([gs[0] - 1, gs[1], gs[2]], dtype=torch.long) for gs in grid_sizes]).to(grid_sizes.device)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return [u.float() for u in x]
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
"""
c = self.out_dim
out = []
for u, v in zip(x, grid_sizes.tolist()):
u = u[: math.prod(v)].view(*v, *self.patch_size, c)
u = torch.einsum("fhwpqrc->cfphqwr", u)
u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
out.append(u)
return out
def init_weights(self):
r"""
Initialize model parameters using Xavier initialization.
"""
# basic init
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
# init embeddings
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
for m in self.text_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
for m in self.time_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
# init output layer
nn.init.zeros_(self.head.head.weight)
def detect_wan_sd_dtype(path: str) -> torch.dtype:
# get dtype from model weights
with MemoryEfficientSafeOpen(path) as f:
keys = set(f.keys())
key1 = "model.diffusion_model.blocks.0.cross_attn.k.weight" # 1.3B
key2 = "blocks.0.cross_attn.k.weight" # 14B
if key1 in keys:
dit_dtype = f.get_tensor(key1).dtype
elif key2 in keys:
dit_dtype = f.get_tensor(key2).dtype
else:
raise ValueError(f"Could not find the dtype in the model weights: {path}")
logger.info(f"Detected DiT dtype: {dit_dtype}")
return dit_dtype
def load_wan_model(
config: any,
device: Union[str, torch.device],
dit_path: str,
attn_mode: str,
split_attn: bool,
loading_device: Union[str, torch.device],
dit_weight_dtype: Optional[torch.dtype],
fp8_scaled: bool = False,
) -> WanModel:
# dit_weight_dtype is None for fp8_scaled
assert (not fp8_scaled and dit_weight_dtype is not None) or (fp8_scaled and dit_weight_dtype is None)
device = torch.device(device)
loading_device = torch.device(loading_device)
wan_loading_device = torch.device("cpu") if fp8_scaled else loading_device
logger.info(f"Loading DiT model state dict from {dit_path}, device={wan_loading_device}, dtype={dit_weight_dtype}")
sd = load_safetensors(dit_path, wan_loading_device, disable_mmap=True, dtype=dit_weight_dtype)
# remove "model.diffusion_model." prefix: 1.3B model has this prefix
sd_keys = list(sd.keys()) # Keep original keys for potential prefix removal
for key in sd_keys:
if key.startswith("model.diffusion_model."):
sd[key[22:]] = sd.pop(key)
# Check for ref_conv layer weights
has_ref_conv = "ref_conv.weight" in sd
in_dim_ref_conv = sd["ref_conv.weight"].shape[1] if has_ref_conv else 16 # Default if not found
if has_ref_conv:
logger.info(f"Detected ref_conv layer in model weights. Input channels: {in_dim_ref_conv}")
with init_empty_weights():
logger.info(f"Creating WanModel")
model = WanModel(
model_type="i2v" if config.i2v else "t2v",
dim=config.dim,
eps=config.eps,
ffn_dim=config.ffn_dim,
freq_dim=config.freq_dim,
in_dim=config.in_dim,
num_heads=config.num_heads,
num_layers=config.num_layers,
out_dim=config.out_dim,
text_len=config.text_len,
attn_mode=attn_mode,
split_attn=split_attn,
add_ref_conv=has_ref_conv, # <<< Pass detected flag
in_dim_ref_conv=in_dim_ref_conv,
)
if dit_weight_dtype is not None and not fp8_scaled: # Don't pre-cast if optimizing to FP8 later
model.to(dit_weight_dtype)
# ... (fp8 optimization - sd is already loaded) ...
if fp8_scaled:
# fp8 optimization: calculate on CUDA, move back to CPU if loading_device is CPU (block swap)
logger.info(f"Optimizing model weights to fp8. This may take a while.")
sd = model.fp8_optimization(sd, device, move_to_device=loading_device.type == "cpu")
if loading_device.type != "cpu":
# make sure all the model weights are on the loading_device
logger.info(f"Moving weights to {loading_device}")
for key in sd.keys():
sd[key] = sd[key].to(loading_device)
# Load the potentially modified state dict
# Use strict=False initially if ref_conv might be missing in older models but present in the class
# After confirming your models, you might set strict=True if all target models have the layer or None.
info = model.load_state_dict(sd, strict=False, assign=True)
logger.info(f"Loaded DiT model from {dit_path}, info={info}")
if not info.missing_keys and not info.unexpected_keys:
logger.info("State dict loaded successfully (strict check passed).")
else:
logger.warning(f"State dict load info: Missing={info.missing_keys}, Unexpected={info.unexpected_keys}")
# If add_ref_conv is True but ref_conv keys are missing, it's an issue.
if has_ref_conv and any("ref_conv" in k for k in info.missing_keys):
raise ValueError("Model configuration indicates ref_conv=True, but weights are missing!")
# If add_ref_conv is False but ref_conv keys are unexpected, it's also an issue with model/config mismatch.
if not has_ref_conv and any("ref_conv" in k for k in info.unexpected_keys):
raise ValueError("Model configuration indicates ref_conv=False, but weights are present!")
return model |