Spaces:
Running
Running
File size: 42,648 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
import argparse
from datetime import datetime
from pathlib import Path
import random
import sys
import os
import time
from typing import Optional, Union
import numpy as np
import torch
import torchvision
import accelerate
from diffusers.utils.torch_utils import randn_tensor
from transformers.models.llama import LlamaModel
from tqdm import tqdm
import av
from einops import rearrange
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
from hunyuan_model import vae
from hunyuan_model import text_encoder
from hunyuan_model.text_encoder import TextEncoder
from hunyuan_model.text_encoder import PROMPT_TEMPLATE
from hunyuan_model.vae import load_vae
from hunyuan_model.models import load_transformer, get_rotary_pos_embed
from hunyuan_model.fp8_optimization import convert_fp8_linear
from modules.scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
from networks import lora
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.model_utils import str_to_dtype
from utils.safetensors_utils import mem_eff_save_file
from dataset.image_video_dataset import load_video, glob_images, resize_image_to_bucket
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def clean_memory_on_device(device):
if device.type == "cuda":
torch.cuda.empty_cache()
elif device.type == "cpu":
pass
elif device.type == "mps": # not tested
torch.mps.empty_cache()
def synchronize_device(device: torch.device):
if device.type == "cuda":
torch.cuda.synchronize()
elif device.type == "xpu":
torch.xpu.synchronize()
elif device.type == "mps":
torch.mps.synchronize()
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
"""save videos by video tensor
copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61
Args:
videos (torch.Tensor): video tensor predicted by the model
path (str): path to save video
rescale (bool, optional): rescale the video tensor from [-1, 1] to . Defaults to False.
n_rows (int, optional): Defaults to 1.
fps (int, optional): video save fps. Defaults to 8.
"""
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp(x, 0, 1)
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
# # save video with av
# container = av.open(path, "w")
# stream = container.add_stream("libx264", rate=fps)
# for x in outputs:
# frame = av.VideoFrame.from_ndarray(x, format="rgb24")
# packet = stream.encode(frame)
# container.mux(packet)
# packet = stream.encode(None)
# container.mux(packet)
# container.close()
height, width, _ = outputs[0].shape
# create output container
container = av.open(path, mode="w")
# create video stream
codec = "libx264"
pixel_format = "yuv420p"
stream = container.add_stream(codec, rate=fps)
stream.width = width
stream.height = height
stream.pix_fmt = pixel_format
stream.bit_rate = 4000000 # 4Mbit/s
for frame_array in outputs:
frame = av.VideoFrame.from_ndarray(frame_array, format="rgb24")
packets = stream.encode(frame)
for packet in packets:
container.mux(packet)
for packet in stream.encode():
container.mux(packet)
container.close()
def save_images_grid(
videos: torch.Tensor, parent_dir: str, image_name: str, rescale: bool = False, n_rows: int = 1, create_subdir=True
):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = torch.clamp(x, 0, 1)
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
if create_subdir:
output_dir = os.path.join(parent_dir, image_name)
else:
output_dir = parent_dir
os.makedirs(output_dir, exist_ok=True)
for i, x in enumerate(outputs):
image_path = os.path.join(output_dir, f"{image_name}_{i:03d}.png")
image = Image.fromarray(x)
image.save(image_path)
# region Encoding prompt
def encode_prompt(
prompt: Union[str, list[str]],
semantic_images: Optional[Union[Image.Image, list[Image.Image]]],
device: torch.device,
num_videos_per_prompt: int,
text_encoder: TextEncoder,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`):
prompt to be encoded
semantic_images (`Image.Image` or `List[Image.Image]`):
semantic images to be used for I2V model
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of videos that should be generated per prompt
text_encoder (TextEncoder):
text encoder to be used for encoding the prompt
"""
# LoRA and Textual Inversion are not supported in this script
# negative prompt and prompt embedding are not supported in this script
# clip_skip is not supported in this script because it is not used in the original script
data_type = "video" # video only, image is not supported
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type, semantic_images=semantic_images)
with torch.no_grad():
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type, device=device, semantic_images=semantic_images)
prompt_embeds = prompt_outputs.hidden_state
attention_mask = prompt_outputs.attention_mask
if attention_mask is not None:
attention_mask = attention_mask.to(device)
bs_embed, seq_len = attention_mask.shape
attention_mask = attention_mask.repeat(1, num_videos_per_prompt)
attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len)
prompt_embeds_dtype = text_encoder.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
if prompt_embeds.ndim == 2:
bs_embed, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1)
else:
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
return prompt_embeds, attention_mask
def encode_input_prompt(
hunyuan_video_i2v: bool,
prompt: Union[str, list[str]],
semantic_images: Optional[Union[Image.Image, list[Image.Image]]],
image_embed_interleave: Optional[int],
args,
device,
fp8_llm=False,
accelerator=None,
):
# constants
prompt_template_video = "dit-llm-encode-video" if not hunyuan_video_i2v else "dit-llm-encode-video-i2v"
prompt_template = "dit-llm-encode" if not hunyuan_video_i2v else "dit-llm-encode-i2v"
# text_encoder_dtype = torch.float16
# text_encoder_type = "llm" if not hunyuan_video_i2v else "llm-i2v"
# text_len = 256
# hidden_state_skip_layer = 2
# apply_final_norm = False
# reproduce = False
# text_encoder_2_type = "clipL"
# text_len_2 = 77
num_videos = 1
if type(prompt) == list:
# use default negative prompt for None
default_negative_prompt = text_encoder.NEGATIVE_PROMPT if not hunyuan_video_i2v else text_encoder.NEGATIVE_PROMPT_I2V
replaced_prompt = [p if p is not None else default_negative_prompt for p in prompt]
prompt = replaced_prompt
if semantic_images is not None and type(semantic_images) != list:
semantic_images = [semantic_images]
# crop_start = PROMPT_TEMPLATE[prompt_template_video].get("crop_start", 0)
# max_length = text_len + crop_start
# prompt_template
prompt_template = PROMPT_TEMPLATE[prompt_template]
# prompt_template_video
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video] # if args.prompt_template_video is not None else None
# load text encoders
logger.info(f"loading text encoder: {args.text_encoder1}")
text_encoder_1 = text_encoder.load_text_encoder_1(
text_encoder_dir=args.text_encoder1,
device="cpu",
fp8_llm=fp8_llm,
i2v_mode=hunyuan_video_i2v,
image_embed_interleave=image_embed_interleave,
clip_vision_path=args.clip_vision_path,
)
text_encoder_1.eval()
logger.info(f"loading text encoder 2: {args.text_encoder2}")
text_encoder_2 = text_encoder.load_text_encoder_2(text_encoder_dir=args.text_encoder2, device="cpu")
text_encoder_2.eval()
# encode prompt
logger.info(f"Encoding prompt with text encoder 1")
text_encoder_1.to(device=device)
if fp8_llm:
with accelerator.autocast():
prompt_embeds, prompt_mask = encode_prompt(prompt, semantic_images, device, num_videos, text_encoder_1)
else:
prompt_embeds, prompt_mask = encode_prompt(prompt, semantic_images, device, num_videos, text_encoder_1)
text_encoder_1 = None
clean_memory_on_device(device)
logger.info(f"Encoding prompt with text encoder 2")
text_encoder_2.to(device=device)
prompt_embeds_2, prompt_mask_2 = encode_prompt(prompt, semantic_images, device, num_videos, text_encoder_2)
prompt_embeds = prompt_embeds.to("cpu")
prompt_mask = prompt_mask.to("cpu")
prompt_embeds_2 = prompt_embeds_2.to("cpu")
prompt_mask_2 = prompt_mask_2.to("cpu")
text_encoder_2 = None
clean_memory_on_device(device)
return prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2
# endregion
def load_images(image_dir, video_length, bucket_reso):
image_files = glob_images(image_dir)
if len(image_files) == 0:
raise ValueError(f"No image files found in {image_dir}")
if len(image_files) < video_length:
raise ValueError(f"Number of images in {image_dir} is less than {video_length}")
image_files.sort()
images = []
for image_file in image_files[:video_length]:
image = Image.open(image_file)
image = resize_image_to_bucket(image, bucket_reso) # returns a numpy array
images.append(image)
return images
def prepare_vae(args, device):
vae_dtype = torch.float16 if args.vae_dtype is None else str_to_dtype(args.vae_dtype)
vae, _, s_ratio, t_ratio = load_vae(vae_dtype=vae_dtype, device=device, vae_path=args.vae)
vae.eval()
# vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
# set chunk_size to CausalConv3d recursively
chunk_size = args.vae_chunk_size
if chunk_size is not None:
vae.set_chunk_size_for_causal_conv_3d(chunk_size)
logger.info(f"Set chunk_size to {chunk_size} for CausalConv3d")
if args.vae_spatial_tile_sample_min_size is not None:
vae.enable_spatial_tiling(True)
vae.tile_sample_min_size = args.vae_spatial_tile_sample_min_size
vae.tile_latent_min_size = args.vae_spatial_tile_sample_min_size // 8
# elif args.vae_tiling:
else:
vae.enable_spatial_tiling(True)
return vae, vae_dtype
def encode_to_latents(args, video, device):
vae, vae_dtype = prepare_vae(args, device)
video = video.to(device=device, dtype=vae_dtype)
video = video * 2 - 1 # 0, 1 -> -1, 1
with torch.no_grad():
latents = vae.encode(video).latent_dist.sample()
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
latents = (latents - vae.config.shift_factor) * vae.config.scaling_factor
else:
latents = latents * vae.config.scaling_factor
return latents
def decode_latents(args, latents, device):
vae, vae_dtype = prepare_vae(args, device)
expand_temporal_dim = False
if len(latents.shape) == 4:
latents = latents.unsqueeze(2)
expand_temporal_dim = True
elif len(latents.shape) == 5:
pass
else:
raise ValueError(f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.")
if hasattr(vae.config, "shift_factor") and vae.config.shift_factor:
latents = latents / vae.config.scaling_factor + vae.config.shift_factor
else:
latents = latents / vae.config.scaling_factor
latents = latents.to(device=device, dtype=vae_dtype)
with torch.no_grad():
image = vae.decode(latents, return_dict=False)[0]
if expand_temporal_dim:
image = image.squeeze(2)
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().float()
return image
def parse_args():
parser = argparse.ArgumentParser(description="HunyuanVideo inference script")
parser.add_argument("--dit", type=str, required=True, help="DiT checkpoint path or directory")
parser.add_argument(
"--dit_in_channels",
type=int,
default=None,
help="input channels for DiT, default is None (automatically detect). 32 for SkyReels-I2V, 16 for others",
)
parser.add_argument("--vae", type=str, required=True, help="VAE checkpoint path or directory")
parser.add_argument("--vae_dtype", type=str, default=None, help="data type for VAE, default is float16")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 path or directory")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 path or directory")
parser.add_argument("--clip_vision_path", type=str, default=None, help="CLIP vision model path for HunyuanVideo-I2V")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
parser.add_argument("--exclude_single_blocks", action="store_true", help="Exclude single blocks when loading LoRA weights")
# inference
parser.add_argument("--prompt", type=str, required=True, help="prompt for generation")
parser.add_argument("--negative_prompt", type=str, default=None, help="negative prompt for generation")
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size")
parser.add_argument("--video_length", type=int, default=129, help="video length")
parser.add_argument("--fps", type=int, default=24, help="video fps")
parser.add_argument("--infer_steps", type=int, default=50, help="number of inference steps")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.")
parser.add_argument(
"--guidance_scale",
type=float,
default=1.0,
help="Guidance scale for classifier free guidance. Default is 1.0 (means no guidance)",
)
parser.add_argument("--embedded_cfg_scale", type=float, default=6.0, help="Embeded classifier free guidance scale.")
parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
parser.add_argument(
"--image_path", type=str, default=None, help="path to image for image2video inference, only works for I2V model"
)
parser.add_argument("--i2v_stability", action="store_true", help="use stability for HunyuanVideo-I2V model")
parser.add_argument(
"--split_uncond",
action="store_true",
help="split unconditional call for classifier free guidance, slower but less memory usage",
)
parser.add_argument("--strength", type=float, default=0.8, help="strength for video2video inference")
# Flow Matching
parser.add_argument("--flow_shift", type=float, default=7.0, help="Shift factor for flow matching schedulers.")
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode", type=str, default="torch", choices=["flash", "torch", "sageattn", "xformers", "sdpa"], help="attention mode"
)
parser.add_argument(
"--split_attn", action="store_true", help="use split attention, default is False. if True, --split_uncond becomes True"
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--blocks_to_swap", type=int, default=None, help="number of blocks to swap in the model")
parser.add_argument("--img_in_txt_in_offloading", action="store_true", help="offload img_in and txt_in to cpu")
parser.add_argument(
"--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arthimetic(RTX 4XXX+)")
parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
parser.add_argument(
"--compile_args", nargs=4, metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
help="Torch.compile settings"
)
args = parser.parse_args()
assert (args.latent_path is None or len(args.latent_path) == 0) or (
args.output_type == "images" or args.output_type == "video"
), "latent_path is only supported for images or video output"
# update dit_weight based on model_base if not exists
if args.fp8_fast and not args.fp8:
raise ValueError("--fp8_fast requires --fp8")
return args
def check_inputs(args):
height = args.video_size[0]
width = args.video_size[1]
video_length = args.video_length
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_length
def main():
args = parse_args()
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
dit_dtype = torch.bfloat16
dit_weight_dtype = torch.float8_e4m3fn if args.fp8 else dit_dtype
logger.info(f"Using device: {device}, DiT precision: {dit_dtype}, weight precision: {dit_weight_dtype}")
original_base_names = None
if args.latent_path is not None and len(args.latent_path) > 0:
original_base_names = []
latents_list = []
seeds = []
for latent_path in args.latent_path:
original_base_names.append(os.path.splitext(os.path.basename(latent_path))[0])
seed = 0
if os.path.splitext(latent_path)[1] != ".safetensors":
latents = torch.load(latent_path, map_location="cpu")
else:
latents = load_file(latent_path)["latent"]
with safe_open(latent_path, framework="pt") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
logger.info(f"Loaded metadata: {metadata}")
if "seeds" in metadata:
seed = int(metadata["seeds"])
seeds.append(seed)
latents_list.append(latents)
logger.info(f"Loaded latent from {latent_path}. Shape: {latents.shape}")
latents = torch.stack(latents_list, dim=0)
else:
# prepare accelerator
mixed_precision = "bf16" if dit_dtype == torch.bfloat16 else "fp16"
accelerator = accelerate.Accelerator(mixed_precision=mixed_precision)
# SkyReels-I2V or HunyuanVideo-I2V
i2v = args.image_path is not None
dit_in_channels = 16 if args.dit_in_channels is None else args.dit_in_channels
semantic_image: Image.Image = None
if i2v:
semantic_image = Image.open(args.image_path).convert("RGB")
sky_reels_i2v = dit_in_channels == 32
hunyuan_video_i2v = not sky_reels_i2v # only supports "token_replace" mode for HunyuanVideo-I2V
if hunyuan_video_i2v:
image_embed_interleave = 4
else:
image_embed_interleave = None
else:
sky_reels_i2v = False
hunyuan_video_i2v = False
image_embed_interleave = None
# load prompt
prompt = args.prompt # TODO load prompts from file
assert prompt is not None, "prompt is required"
# check inputs: may be height, width, video_length etc will be changed for each generation in future
height, width, video_length = check_inputs(args)
# encode prompt with LLM and Text Encoder
logger.info(f"Encoding prompt: {prompt}")
do_classifier_free_guidance = args.guidance_scale != 1.0
semantic_images = [semantic_image] # for prompt
if do_classifier_free_guidance:
negative_prompt = args.negative_prompt
if negative_prompt is None:
logger.info("Negative prompt is not provided, using default prompt")
logger.info(f"Encoding negative prompt: {negative_prompt}")
prompt = [negative_prompt, prompt]
# use black image for negative prompt
semantic_images = [Image.new("RGB", semantic_image.size, (0, 0, 0)), semantic_image]
else:
if args.negative_prompt is not None:
logger.warning("Negative prompt is provided but guidance_scale is 1.0, negative prompt will be ignored.")
prompt_embeds, prompt_mask, prompt_embeds_2, prompt_mask_2 = encode_input_prompt(
hunyuan_video_i2v, prompt, semantic_images, image_embed_interleave, args, device, args.fp8_llm, accelerator
)
# encode latents for video2video inference
video_latents = None
if args.video_path is not None:
# v2v inference
logger.info(f"Video2Video inference: {args.video_path}")
if os.path.isfile(args.video_path):
video = load_video(args.video_path, 0, video_length, bucket_reso=(width, height)) # list of frames
else:
video = load_images(args.video_path, video_length, bucket_reso=(width, height)) # list of frames
if len(video) < video_length:
raise ValueError(f"Video length is less than {video_length}")
video = np.stack(video, axis=0) # F, H, W, C
video = torch.from_numpy(video).permute(3, 0, 1, 2).unsqueeze(0).float() # 1, C, F, H, W
video = video / 255.0
logger.info(f"Encoding video to latents")
video_latents = encode_to_latents(args, video, device)
video_latents = video_latents.to(device=device, dtype=dit_dtype)
clean_memory_on_device(device)
# encode latents for image2video inference
image_latents = None
if i2v:
# i2v inference
logger.info(f"Image2Video inference: {args.image_path}")
image = resize_image_to_bucket(semantic_image, (width, height)) # returns a numpy array
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).unsqueeze(2).float() # 1, C, 1, H, W
image = image / 255.0
logger.info(f"Encoding image to latents")
image_latents = encode_to_latents(args, image, device) # 1, C, 1, H, W
image_latents = image_latents.to(device=device, dtype=dit_dtype)
clean_memory_on_device(device)
# load DiT model
blocks_to_swap = args.blocks_to_swap if args.blocks_to_swap else 0
loading_device = "cpu" # if blocks_to_swap > 0 else device
logger.info(f"Loading DiT model from {args.dit}")
if args.attn_mode == "sdpa":
args.attn_mode = "torch"
# if we use LoRA, weigths should be bf16 instead of fp8, because merging should be done in bf16
# the model is too large, so we load the model to cpu. in addition, the .pt file is loaded to cpu anyway
# on the fly merging will be a solution for this issue for .safetenors files (not implemented yet)
transformer = load_transformer(
args.dit,
args.attn_mode,
args.split_attn,
loading_device,
dit_dtype,
in_channels=dit_in_channels,
i2v_mode=hunyuan_video_i2v,
)
transformer.eval()
# load LoRA weights
if args.lora_weight is not None and len(args.lora_weight) > 0:
for i, lora_weight in enumerate(args.lora_weight):
if args.lora_multiplier is not None and len(args.lora_multiplier) > i:
lora_multiplier = args.lora_multiplier[i]
else:
lora_multiplier = 1.0
logger.info(f"Loading LoRA weights from {lora_weight} with multiplier {lora_multiplier}")
weights_sd = load_file(lora_weight)
# Filter to exclude keys that are part of single_blocks
if args.exclude_single_blocks:
filtered_weights = {k: v for k, v in weights_sd.items() if "single_blocks" not in k}
weights_sd = filtered_weights
if args.lycoris:
lycoris_net, _ = create_network_from_weights(
multiplier=lora_multiplier,
file=None,
weights_sd=weights_sd,
unet=transformer,
text_encoder=None,
vae=None,
for_inference=True,
)
else:
network = lora.create_arch_network_from_weights(
lora_multiplier, weights_sd, unet=transformer, for_inference=True
)
logger.info("Merging LoRA weights to DiT model")
# try:
# network.apply_to(None, transformer, apply_text_encoder=False, apply_unet=True)
# info = network.load_state_dict(weights_sd, strict=True)
# logger.info(f"Loaded LoRA weights from {weights_file}: {info}")
# network.eval()
# network.to(device)
# except Exception as e:
if args.lycoris:
lycoris_net.merge_to(None, transformer, weights_sd, dtype=None, device=device)
else:
network.merge_to(None, transformer, weights_sd, device=device, non_blocking=True)
synchronize_device(device)
logger.info("LoRA weights loaded")
# save model here before casting to dit_weight_dtype
if args.save_merged_model:
logger.info(f"Saving merged model to {args.save_merged_model}")
mem_eff_save_file(transformer.state_dict(), args.save_merged_model) # save_file needs a lot of memory
logger.info("Merged model saved")
return
logger.info(f"Casting model to {dit_weight_dtype}")
transformer.to(dtype=dit_weight_dtype)
if args.fp8_fast:
logger.info("Enabling FP8 acceleration")
params_to_keep = {"norm", "bias", "time_in", "vector_in", "guidance_in", "txt_in", "img_in"}
for name, param in transformer.named_parameters():
dtype_to_use = dit_dtype if any(keyword in name for keyword in params_to_keep) else dit_weight_dtype
param.to(dtype=dtype_to_use)
convert_fp8_linear(transformer, dit_dtype, params_to_keep=params_to_keep)
if args.compile:
compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
logger.info(
f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
)
torch._dynamo.config.cache_size_limit = 32
for i, block in enumerate(transformer.single_blocks):
compiled_block = torch.compile(
block, backend=compile_backend, mode=compile_mode,
dynamic=compile_dynamic.lower() in "true",
fullgraph=compile_fullgraph.lower() in "true"
)
transformer.single_blocks[i] = compiled_block
for i, block in enumerate(transformer.double_blocks):
compiled_block = torch.compile(
block, backend=compile_backend, mode=compile_mode,
dynamic=compile_dynamic.lower() in "true",
fullgraph=compile_fullgraph.lower() in "true"
)
transformer.double_blocks[i] = compiled_block
if blocks_to_swap > 0:
logger.info(f"Enable swap {blocks_to_swap} blocks to CPU from device: {device}")
transformer.enable_block_swap(blocks_to_swap, device, supports_backward=False)
transformer.move_to_device_except_swap_blocks(device)
transformer.prepare_block_swap_before_forward()
else:
logger.info(f"Moving model to {device}")
transformer.to(device=device)
if args.img_in_txt_in_offloading:
logger.info("Enable offloading img_in and txt_in to CPU")
transformer.enable_img_in_txt_in_offloading()
# load scheduler
logger.info(f"Loading scheduler")
scheduler = FlowMatchDiscreteScheduler(shift=args.flow_shift, reverse=True, solver="euler")
# Prepare timesteps
num_inference_steps = args.infer_steps
scheduler.set_timesteps(num_inference_steps, device=device) # n_tokens is not used in FlowMatchDiscreteScheduler
timesteps = scheduler.timesteps
# Prepare generator
num_videos_per_prompt = 1 # args.num_videos # currently only support 1 video per prompt, this is a batch size
seed = args.seed
if seed is None:
seeds = [random.randint(0, 2**32 - 1) for _ in range(num_videos_per_prompt)]
elif isinstance(seed, int):
seeds = [seed + i for i in range(num_videos_per_prompt)]
else:
raise ValueError(f"Seed must be an integer or None, got {seed}.")
generator = [torch.Generator(device).manual_seed(seed) for seed in seeds]
# Prepare noisy latents
num_channels_latents = 16 # transformer.config.in_channels
vae_scale_factor = 2 ** (4 - 1) # len(self.vae.config.block_out_channels) == 4
vae_ver = vae.VAE_VER
if "884" in vae_ver:
latent_video_length = (video_length - 1) // 4 + 1
elif "888" in vae_ver:
latent_video_length = (video_length - 1) // 8 + 1
else:
latent_video_length = video_length
# shape = (
# num_videos_per_prompt,
# num_channels_latents,
# latent_video_length,
# height // vae_scale_factor,
# width // vae_scale_factor,
# )
# latents = randn_tensor(shape, generator=generator, device=device, dtype=dit_dtype)
# make first N frames to be the same if the given seed is same
shape_of_frame = (num_videos_per_prompt, num_channels_latents, 1, height // vae_scale_factor, width // vae_scale_factor)
latents = []
for i in range(latent_video_length):
latents.append(randn_tensor(shape_of_frame, generator=generator, device=device, dtype=dit_dtype))
latents = torch.cat(latents, dim=2)
if sky_reels_i2v:
# pad image_latents to match the length of video_latents
zero_latents = torch.zeros_like(latents)
zero_latents[:, :, :1, :, :] = image_latents
image_latents = zero_latents
elif hunyuan_video_i2v:
if args.i2v_stability:
t = torch.tensor([0.999]).to(device=device)
latents = latents * t + image_latents.repeat(1, 1, latent_video_length, 1, 1) * (1 - t)
if args.video_path is not None:
# v2v inference
noise = latents
assert noise.shape == video_latents.shape, f"noise shape {noise.shape} != video_latents shape {video_latents.shape}"
num_inference_steps = int(num_inference_steps * args.strength)
timestep_start = scheduler.timesteps[-num_inference_steps] # larger strength, less inference steps and more start time
t = timestep_start / 1000.0
latents = noise * t + video_latents * (1 - t)
timesteps = timesteps[-num_inference_steps:]
logger.info(f"strength: {args.strength}, num_inference_steps: {num_inference_steps}, timestep_start: {timestep_start}")
# FlowMatchDiscreteScheduler does not have init_noise_sigma
# Denoising loop
embedded_guidance_scale = args.embedded_cfg_scale
if embedded_guidance_scale is not None:
guidance_expand = torch.tensor([embedded_guidance_scale * 1000.0] * latents.shape[0], dtype=torch.float32, device="cpu")
guidance_expand = guidance_expand.to(device=device, dtype=dit_dtype)
if do_classifier_free_guidance:
guidance_expand = torch.cat([guidance_expand, guidance_expand], dim=0)
else:
guidance_expand = None
freqs_cos, freqs_sin = get_rotary_pos_embed(vae_ver, transformer, video_length, height, width)
# n_tokens = freqs_cos.shape[0]
# move and cast all inputs to the correct device and dtype
prompt_embeds = prompt_embeds.to(device=device, dtype=dit_dtype)
prompt_mask = prompt_mask.to(device=device)
prompt_embeds_2 = prompt_embeds_2.to(device=device, dtype=dit_dtype)
prompt_mask_2 = prompt_mask_2.to(device=device)
freqs_cos = freqs_cos.to(device=device, dtype=dit_dtype)
freqs_sin = freqs_sin.to(device=device, dtype=dit_dtype)
num_warmup_steps = len(timesteps) - num_inference_steps * scheduler.order # this should be 0 in v2v inference
# assert split_uncond and split_attn
if args.split_attn and do_classifier_free_guidance and not args.split_uncond:
logger.warning("split_attn is enabled, split_uncond will be enabled as well.")
args.split_uncond = True
# we do not support "latent_concat" mode for HunyuanVideo-I2V model, only "token_replace" mode is supported
# with torch.profiler.profile(activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA]) as p:
with tqdm(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latents = scheduler.scale_model_input(latents, t)
# predict the noise residual
with torch.no_grad(), accelerator.autocast():
if hunyuan_video_i2v: # and i2v_condition_type == "token_replace":
latents = torch.cat([image_latents, latents[:, :, 1:, :, :]], dim=2)
latents_input = latents if not do_classifier_free_guidance else torch.cat([latents, latents], dim=0)
if sky_reels_i2v:
latents_image_input = (
image_latents if not do_classifier_free_guidance else torch.cat([image_latents, image_latents], dim=0)
)
latents_input = torch.cat([latents_input, latents_image_input], dim=1) # 1 or 2, C*2, F, H, W
batch_size = 1 if args.split_uncond else latents_input.shape[0]
noise_pred_list = []
for j in range(0, latents_input.shape[0], batch_size):
noise_pred = transformer( # For an input image (129, 192, 336) (1, 256, 256)
latents_input[j : j + batch_size], # [1, 16, 33, 24, 42]
t.repeat(batch_size).to(device=device, dtype=dit_dtype), # [1]
text_states=prompt_embeds[j : j + batch_size], # [1, 256, 4096]
text_mask=prompt_mask[j : j + batch_size], # [1, 256]
text_states_2=prompt_embeds_2[j : j + batch_size], # [1, 768]
freqs_cos=freqs_cos, # [seqlen, head_dim]
freqs_sin=freqs_sin, # [seqlen, head_dim]
guidance=guidance_expand[j : j + batch_size], # [1]
return_dict=True,
)["x"]
noise_pred_list.append(noise_pred)
noise_pred = torch.cat(noise_pred_list, dim=0)
# perform classifier free guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + args.guidance_scale * (noise_pred_cond - noise_pred_uncond)
# # SkyReels' rescale noise config is omitted for now
# if guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(
# noise_pred,
# noise_pred_cond,
# guidance_rescale=self.guidance_rescale,
# )
# compute the previous noisy sample x_t -> x_t-1
# generator and eta arguments are not used in FlowMatchDiscreteScheduler
if not hunyuan_video_i2v:
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
else:
latents = scheduler.step(noise_pred[:, :, 1:, :, :], t, latents[:, :, 1:, :, :], return_dict=False)[0]
latents = torch.concat([image_latents, latents], dim=2)
# update progress bar
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
if progress_bar is not None:
progress_bar.update()
# print(p.key_averages().table(sort_by="self_cpu_time_total", row_limit=-1))
# print(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1))
latents = latents.detach().cpu()
transformer = None
clean_memory_on_device(device)
# Save samples
output_type = args.output_type
save_path = args.save_path # if args.save_path_suffix == "" else f"{args.save_path}_{args.save_path_suffix}"
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
if output_type == "latent" or output_type == "both":
# save latent
for i, latent in enumerate(latents):
latent_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}_latent.safetensors"
if args.no_metadata:
metadata = None
else:
metadata = {
"seeds": f"{seeds[i]}",
"prompt": f"{args.prompt}",
"height": f"{height}",
"width": f"{width}",
"video_length": f"{video_length}",
"infer_steps": f"{num_inference_steps}",
"guidance_scale": f"{args.guidance_scale}",
"embedded_cfg_scale": f"{args.embedded_cfg_scale}",
}
if args.negative_prompt is not None:
metadata["negative_prompt"] = f"{args.negative_prompt}"
sd = {"latent": latent}
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent save to: {latent_path}")
if output_type == "video" or output_type == "both":
# save video
videos = decode_latents(args, latents, device)
for i, sample in enumerate(videos):
original_name = "" if original_base_names is None else f"_{original_base_names[i]}"
sample = sample.unsqueeze(0)
video_path = f"{save_path}/{time_flag}_{i}_{seeds[i]}{original_name}.mp4"
save_videos_grid(sample, video_path, fps=args.fps)
logger.info(f"Sample save to: {video_path}")
elif output_type == "images":
# save images
videos = decode_latents(args, latents, device)
for i, sample in enumerate(videos):
original_name = "" if original_base_names is None else f"_{original_base_names[i]}"
sample = sample.unsqueeze(0)
image_name = f"{time_flag}_{i}_{seeds[i]}{original_name}"
save_images_grid(sample, save_path, image_name)
logger.info(f"Sample images save to: {save_path}/{image_name}")
logger.info("Done!")
if __name__ == "__main__":
main()
|