Spaces:
Running
Running
File size: 58,803 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 |
from dataclasses import dataclass
import json
import os
from typing import Optional, Tuple, Union
from copy import deepcopy
import torch
import torch.nn as nn
from transformers import (
CLIPTextModel,
CLIPTokenizer,
AutoTokenizer,
AutoModel,
CLIPConfig,
LlamaForCausalLM,
LlamaConfig,
LlavaConfig,
LlavaProcessor,
CLIPImageProcessor,
)
from transformers.utils import ModelOutput
from transformers.models.llama import LlamaModel
from transformers.models.llava import LlavaForConditionalGeneration
from safetensors.torch import load_file
from accelerate import init_empty_weights
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
CLIP_L_HUGGINGFACE_MODEL_ID = "openai/clip-vit-large-patch14"
LLAVA_HUGGINGFACE_MODEL_ID = "xtuner/llava-llama-3-8b-v1_1-transformers"
CLIP_CONFIG = {
"_name_or_path": "clip-vit-large-patch14/",
"architectures": ["CLIPModel"],
"initializer_factor": 1.0,
"logit_scale_init_value": 2.6592,
"model_type": "clip",
"projection_dim": 768,
# "text_config": {
"_name_or_path": "",
"add_cross_attention": False,
"architectures": None,
"attention_dropout": 0.0,
"bad_words_ids": None,
"bos_token_id": 0,
"chunk_size_feed_forward": 0,
"cross_attention_hidden_size": None,
"decoder_start_token_id": None,
"diversity_penalty": 0.0,
"do_sample": False,
"dropout": 0.0,
"early_stopping": False,
"encoder_no_repeat_ngram_size": 0,
"eos_token_id": 2,
"finetuning_task": None,
"forced_bos_token_id": None,
"forced_eos_token_id": None,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"id2label": {"0": "LABEL_0", "1": "LABEL_1"},
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"is_decoder": False,
"is_encoder_decoder": False,
"label2id": {"LABEL_0": 0, "LABEL_1": 1},
"layer_norm_eps": 1e-05,
"length_penalty": 1.0,
"max_length": 20,
"max_position_embeddings": 77,
"min_length": 0,
"model_type": "clip_text_model",
"no_repeat_ngram_size": 0,
"num_attention_heads": 12,
"num_beam_groups": 1,
"num_beams": 1,
"num_hidden_layers": 12,
"num_return_sequences": 1,
"output_attentions": False,
"output_hidden_states": False,
"output_scores": False,
"pad_token_id": 1,
"prefix": None,
"problem_type": None,
"projection_dim": 768,
"pruned_heads": {},
"remove_invalid_values": False,
"repetition_penalty": 1.0,
"return_dict": True,
"return_dict_in_generate": False,
"sep_token_id": None,
"task_specific_params": None,
"temperature": 1.0,
"tie_encoder_decoder": False,
"tie_word_embeddings": True,
"tokenizer_class": None,
"top_k": 50,
"top_p": 1.0,
"torch_dtype": None,
"torchscript": False,
"transformers_version": "4.16.0.dev0",
"use_bfloat16": False,
"vocab_size": 49408,
# },
# "text_config_dict": {
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"projection_dim": 768,
# },
# "torch_dtype": "float32",
# "transformers_version": null
}
LLAMA_CONFIG = {
"architectures": ["LlamaForCausalLM"],
"attention_bias": False,
"attention_dropout": 0.0,
"bos_token_id": 128000,
"eos_token_id": 128001,
"head_dim": 128,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 8192,
"mlp_bias": False,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 8,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": None,
"rope_theta": 500000.0,
"tie_word_embeddings": False,
"torch_dtype": "float16",
"transformers_version": "4.46.3",
"use_cache": True,
"vocab_size": 128320,
}
LLAVA_CONFIG_JSON = json.loads(
"""
{
"architectures": [
"LlavaForConditionalGeneration"
],
"ignore_index": -100,
"image_token_index": 128257,
"model_type": "llava",
"pad_token_id": 128258,
"projector_hidden_act": "gelu",
"text_config": {
"architectures": [
"LlamaForCausalLM"
],
"bos_token_id": 128000,
"eos_token_id": 128001,
"intermediate_size": 14336,
"max_position_embeddings": 8192,
"model_type": "llama",
"num_key_value_heads": 8,
"rms_norm_eps": 1e-05,
"rope_theta": 500000.0,
"torch_dtype": "float16",
"vocab_size": 128320
},
"torch_dtype": "float16",
"transformers_version": "4.40.1",
"vision_config": {
"architectures": [
"CLIPVisionModel"
],
"dropout": 0.0,
"hidden_size": 1024,
"image_size": 336,
"intermediate_size": 4096,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"torch_dtype": "float32"
},
"vision_feature_layer": -2,
"vision_feature_select_strategy": "default"
}"""
)
LLAVA_PROCESSOR_CONFIG = json.loads(
"""{
"image_token": "<image>",
"num_additional_image_tokens": 1,
"patch_size": 14,
"processor_class": "LlavaNextProcessor",
"vision_feature_select_strategy": "default"
}"""
)
# When using decoder-only models, we must provide a prompt template to instruct the text encoder
# on how to generate the text.
# --------------------------------------------------------------------
PROMPT_TEMPLATE_ENCODE = (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
)
PROMPT_TEMPLATE_ENCODE_VIDEO = (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
)
PROMPT_TEMPLATE_ENCODE_I2V = (
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
NEGATIVE_PROMPT_I2V = "deformation, a poor composition and deformed video, bad teeth, bad eyes, bad limbs"
PROMPT_TEMPLATE = {
"dit-llm-encode": {
"template": PROMPT_TEMPLATE_ENCODE,
"crop_start": 36,
},
"dit-llm-encode-video": {
"template": PROMPT_TEMPLATE_ENCODE_VIDEO,
"crop_start": 95,
},
"dit-llm-encode-i2v": {
"template": PROMPT_TEMPLATE_ENCODE_I2V,
"crop_start": 36,
"image_emb_start": 5,
"image_emb_end": 581,
"image_emb_len": 576,
"double_return_token_id": 271,
},
"dit-llm-encode-video-i2v": {
"template": PROMPT_TEMPLATE_ENCODE_VIDEO_I2V,
"crop_start": 103,
"image_emb_start": 5,
"image_emb_end": 581,
"image_emb_len": 576,
"double_return_token_id": 271,
},
}
def use_default(value, default):
return value if value is not None else default
def load_clip_l(text_encoder_path: str, dtype: Optional[Union[str, torch.dtype]] = None):
if os.path.isdir(text_encoder_path):
# load from directory, configs are in the directory
text_encoder = CLIPTextModel.from_pretrained(text_encoder_path, torch_dtype=dtype)
else:
# load from file, we create the model with the appropriate config
config = CLIPConfig(**CLIP_CONFIG)
with init_empty_weights():
text_encoder = CLIPTextModel._from_config(config, torch_dtype=dtype)
state_dict = load_file(text_encoder_path)
text_encoder.load_state_dict(state_dict, strict=True, assign=True)
# if dtype is not None:
# text_encoder.to(dtype=dtype)
return text_encoder
def load_clip_l_tokenizer(tokenizer_path: str):
if os.path.isdir(tokenizer_path):
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path, max_length=77)
else:
# load from Hugging Face
logger.info(f"Loading tokenizer from Hugging Face: {CLIP_L_HUGGINGFACE_MODEL_ID}")
tokenizer = CLIPTokenizer.from_pretrained(CLIP_L_HUGGINGFACE_MODEL_ID, max_length=77)
return tokenizer
def load_llm(text_encoder_path: str, dtype: Optional[Union[str, torch.dtype]] = None):
if os.path.isdir(text_encoder_path):
# load from directory, configs are in the directory
text_encoder = AutoModel.from_pretrained(text_encoder_path, low_cpu_mem_usage=True, torch_dtype=dtype)
else:
# load from file, we create the model with the appropriate config
config = LlamaConfig(**LLAMA_CONFIG)
with init_empty_weights():
text_encoder = LlamaForCausalLM._from_config(config, torch_dtype=dtype)
state_dict = load_file(text_encoder_path)
# support weights from ComfyUI
if "tokenizer" in state_dict:
state_dict.pop("tokenizer")
text_encoder.load_state_dict(state_dict, strict=True, assign=True)
return text_encoder
def load_llm_i2v(text_encoder_path: str, clip_vision_path: str, dtype: Optional[Union[str, torch.dtype]] = None):
if os.path.isdir(text_encoder_path):
# load from directory, configs are in the directory
text_encoder = LlavaForConditionalGeneration.from_pretrained(text_encoder_path, low_cpu_mem_usage=True)
else:
# load from file, we create the model with the appropriate config
config = LlavaConfig(**LLAVA_CONFIG_JSON)
with init_empty_weights():
text_encoder = LlavaForConditionalGeneration._from_config(config, torch_dtype=dtype)
state_dict = load_file(text_encoder_path)
# support weights from ComfyUI
if "tokenizer" in state_dict:
state_dict.pop("tokenizer")
state_dict = {"language_model." + k: v for k, v in state_dict.items()}
state_dict_vision = load_file(clip_vision_path)
state_dict_vision = {
("vision_tower." if "multi_modal_projector." not in k else "") + k: v for k, v in state_dict_vision.items()
}
state_dict.update(state_dict_vision)
text_encoder.load_state_dict(state_dict, strict=True, assign=True)
return text_encoder
def load_llm_tokenizer(tokenizer_path: str, padding_side="right"):
if os.path.isdir(tokenizer_path):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
else:
# load from Hugging Face
logger.info(f"Loading tokenizer from Hugging Face: {LLAVA_HUGGINGFACE_MODEL_ID}")
tokenizer = AutoTokenizer.from_pretrained(LLAVA_HUGGINGFACE_MODEL_ID, padding_side=padding_side)
return tokenizer
def load_text_encoder(
text_encoder_type: str,
text_encoder_path: str,
text_encoder_dtype: Optional[Union[str, torch.dtype]] = None,
clip_vision_path: Optional[str] = None,
):
logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}")
# reduce peak memory usage by specifying the dtype of the model
dtype = text_encoder_dtype
processor = None
if text_encoder_type == "clipL":
text_encoder = load_clip_l(text_encoder_path, dtype=dtype)
text_encoder.final_layer_norm = text_encoder.text_model.final_layer_norm
elif text_encoder_type == "llm":
text_encoder = load_llm(text_encoder_path, dtype=dtype)
if hasattr(text_encoder, "norm"):
text_encoder.final_layer_norm = text_encoder.norm # by from_pretrained
else:
text_encoder.final_layer_norm = text_encoder.model.norm # by _from_config
elif text_encoder_type == "llm-i2v":
text_encoder = load_llm_i2v(text_encoder_path, clip_vision_path, dtype=dtype)
text_encoder.final_layer_norm = text_encoder.language_model.model.norm
else:
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
# from_pretrained will ensure that the model is in eval mode.
if dtype is not None:
text_encoder = text_encoder.to(dtype=dtype)
text_encoder.requires_grad_(False)
logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
return text_encoder, processor, text_encoder_path
def load_tokenizer(tokenizer_type, tokenizer_path=None, padding_side="right"):
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")
if tokenizer_type == "clipL":
tokenizer = load_clip_l_tokenizer(tokenizer_path)
elif tokenizer_type == "llm" or tokenizer_type == "llm-i2v":
tokenizer = load_llm_tokenizer(tokenizer_path, padding_side=padding_side)
else:
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")
return tokenizer, tokenizer_path
@dataclass
class TextEncoderModelOutput(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
hidden_states_list (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
text_outputs (`list`, *optional*, returned when `return_texts=True` is passed):
List of decoded texts.
"""
hidden_state: torch.FloatTensor = None
attention_mask: Optional[torch.LongTensor] = None
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
text_outputs: Optional[list] = None
class TextEncoder(nn.Module):
def __init__(
self,
text_encoder_type: str,
max_length: int,
text_encoder_dtype: Optional[Union[str, torch.dtype]] = None,
text_encoder_path: Optional[str] = None,
clip_vision_path: Optional[str] = None,
tokenizer_type: Optional[str] = None,
tokenizer_path: Optional[str] = None,
i2v_mode: bool = False,
output_key: Optional[str] = None,
use_attention_mask: bool = True,
input_max_length: Optional[int] = None,
prompt_template: Optional[dict] = None,
prompt_template_video: Optional[dict] = None,
hidden_state_skip_layer: Optional[int] = None,
apply_final_norm: bool = False,
reproduce: bool = False,
image_embed_interleave: int = None,
):
super().__init__()
self.text_encoder_type = text_encoder_type
self.max_length = max_length
# self.precision = text_encoder_precision
self.model_path = text_encoder_path
self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type
self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path
self.i2v_mode = i2v_mode
self.use_attention_mask = use_attention_mask
if prompt_template_video is not None:
assert use_attention_mask is True, "Attention mask is True required when training videos."
self.input_max_length = input_max_length if input_max_length is not None else max_length
self.prompt_template = prompt_template
self.prompt_template_video = prompt_template_video
self.hidden_state_skip_layer = hidden_state_skip_layer
self.apply_final_norm = apply_final_norm
self.reproduce = reproduce
self.image_embed_interleave = image_embed_interleave
self.use_template = self.prompt_template is not None
if self.use_template:
assert (
isinstance(self.prompt_template, dict) and "template" in self.prompt_template
), f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
assert "{}" in str(self.prompt_template["template"]), (
"`prompt_template['template']` must contain a placeholder `{}` for the input text, "
f"got {self.prompt_template['template']}"
)
self.use_video_template = self.prompt_template_video is not None
if self.use_video_template:
if self.prompt_template_video is not None:
assert (
isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video
), f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
assert "{}" in str(self.prompt_template_video["template"]), (
"`prompt_template_video['template']` must contain a placeholder `{}` for the input text, "
f"got {self.prompt_template_video['template']}"
)
if "t5" in text_encoder_type:
self.output_key = output_key or "last_hidden_state"
elif "clip" in text_encoder_type:
self.output_key = output_key or "pooler_output"
elif "llm" in text_encoder_type or "glm" in text_encoder_type:
self.output_key = output_key or "last_hidden_state"
else:
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
self.model, self.processor, self.model_path = load_text_encoder(
text_encoder_type=self.text_encoder_type,
text_encoder_path=self.model_path,
text_encoder_dtype=text_encoder_dtype,
clip_vision_path=clip_vision_path,
)
self.dtype = self.model.dtype
self.tokenizer, self.tokenizer_path = load_tokenizer(
tokenizer_type=self.tokenizer_type, tokenizer_path=self.tokenizer_path, padding_side="right"
)
if text_encoder_type == "llm-i2v":
clip_processor = CLIPImageProcessor.from_pretrained(LLAVA_HUGGINGFACE_MODEL_ID)
self.processor = LlavaProcessor.from_args_and_dict(
args=[clip_processor, self.tokenizer], processor_dict=LLAVA_PROCESSOR_CONFIG
)
# print(f"patch size: {self.processor.patch_size}, vision strategy: {self.processor.vision_feature_select_strategy}")
else:
self.processor = None
def __repr__(self):
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"
@property
def device(self):
return self.model.device
@staticmethod
def apply_text_to_template(text, template, prevent_empty_text=True):
"""
Apply text to template.
Args:
text (str): Input text.
template (str or list): Template string or list of chat conversation.
prevent_empty_text (bool): If Ture, we will prevent the user text from being empty
by adding a space. Defaults to True.
"""
if isinstance(template, str):
# Will send string to tokenizer. Used for llm
return template.format(text)
else:
raise TypeError(f"Unsupported template type: {type(template)}")
def text2tokens(self, text, data_type="image", semantic_images=None):
"""
Tokenize the input text.
Args:
text (str or list): Input text.
"""
tokenize_input_type = "str"
if self.use_template:
if data_type == "image":
prompt_template = self.prompt_template["template"]
elif data_type == "video":
prompt_template = self.prompt_template_video["template"]
else:
raise ValueError(f"Unsupported data type: {data_type}")
if isinstance(text, (list, tuple)):
text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text]
if isinstance(text[0], list):
tokenize_input_type = "list"
elif isinstance(text, str):
text = self.apply_text_to_template(text, prompt_template)
if isinstance(text, list):
tokenize_input_type = "list"
else:
raise TypeError(f"Unsupported text type: {type(text)}")
else:
if isinstance(text, (list, tuple)):
tokenize_input_type = "list"
elif isinstance(text, str):
tokenize_input_type = "str"
else:
raise TypeError(f"Unsupported text type: {type(text)}")
kwargs = dict(
truncation=True,
max_length=self.max_length,
padding="max_length",
return_tensors="pt",
)
if tokenize_input_type == "str":
if self.text_encoder_type != "llm-i2v":
return self.tokenizer(
text,
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=True,
**kwargs,
)
else:
# support transformers >= 4.47
assert semantic_images is not None, "semantic_images is required for i2v mode tokenization."
kwargs["max_length"] += 575 # image feature length-1
return self.processor(
semantic_images,
text,
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=True,
**kwargs,
)
elif tokenize_input_type == "list":
if self.use_template:
# this block is not tested yet
return self.tokenizer(
text,
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=True,
**kwargs,
)
else:
return self.tokenizer.apply_chat_template(
text,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
**kwargs,
)
else:
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")
def encode(
self,
batch_encoding,
use_attention_mask=None,
output_hidden_states=False,
do_sample=None,
hidden_state_skip_layer=None,
return_texts=False,
data_type="image",
semantic_images=None,
device=None,
):
"""
Args:
batch_encoding (dict): Batch encoding from tokenizer.
use_attention_mask (bool): Whether to use attention mask. If None, use self.use_attention_mask.
Defaults to None.
output_hidden_states (bool): Whether to output hidden states. If False, return the value of
self.output_key. If True, return the entire output. If set self.hidden_state_skip_layer,
output_hidden_states will be set True. Defaults to False.
do_sample (bool): Whether to sample from the model. Used for Decoder-Only LLMs. Defaults to None.
When self.produce is False, do_sample is set to True by default.
hidden_state_skip_layer (int): Number of hidden states to hidden_state_skip_layer. 0 means the last layer.
If None, self.output_key will be used. Defaults to None.
return_texts (bool): Whether to return the decoded texts. Defaults to False.
"""
device = self.model.device if device is None else device
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer)
do_sample = use_default(do_sample, not self.reproduce)
if not self.i2v_mode:
attention_mask = batch_encoding["attention_mask"].to(device) if use_attention_mask else None
outputs = self.model(
input_ids=batch_encoding["input_ids"].to(device),
attention_mask=attention_mask,
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,
)
if hidden_state_skip_layer is not None:
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
# Real last hidden state already has layer norm applied. So here we only apply it
# for intermediate layers.
if hidden_state_skip_layer > 0 and self.apply_final_norm:
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
else:
last_hidden_state = outputs[self.output_key]
# Remove hidden states of instruction tokens, only keep prompt tokens.
if self.use_template:
if data_type == "image":
crop_start = self.prompt_template.get("crop_start", -1)
elif data_type == "video":
crop_start = self.prompt_template_video.get("crop_start", -1)
else:
raise ValueError(f"Unsupported data type: {data_type}")
if crop_start > 0:
last_hidden_state = last_hidden_state[:, crop_start:]
attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None
if output_hidden_states:
return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states)
return TextEncoderModelOutput(last_hidden_state, attention_mask)
else:
# I2V mode
"""
# original code from HunyuanVideo
image_outputs = self.processor(semantic_images, return_tensors="pt")["pixel_values"].to(device)
attention_mask = batch_encoding["attention_mask"].to(device) if use_attention_mask else None
outputs = self.model(
input_ids=batch_encoding["input_ids"].to(device),
attention_mask=attention_mask,
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,
pixel_values=image_outputs,
)
if hidden_state_skip_layer is not None:
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
# Real last hidden state already has layer norm applied. So here we only apply it
# for intermediate layers.
if hidden_state_skip_layer > 0 and self.apply_final_norm:
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
else:
last_hidden_state = outputs[self.output_key]
if self.use_template:
if data_type == "video":
crop_start = self.prompt_template_video.get("crop_start", -1)
text_crop_start = crop_start - 1 + self.prompt_template_video.get("image_emb_len", 576)
image_crop_start = self.prompt_template_video.get("image_emb_start", 5)
image_crop_end = self.prompt_template_video.get("image_emb_end", 581)
batch_indices, last_double_return_token_indices = torch.where(
batch_encoding["input_ids"] == self.prompt_template_video.get("double_return_token_id", 271)
)
if last_double_return_token_indices.shape[0] == 3:
# in case the prompt is too long
last_double_return_token_indices = torch.cat(
(last_double_return_token_indices, torch.tensor([batch_encoding["input_ids"].shape[-1]]))
)
batch_indices = torch.cat((batch_indices, torch.tensor([0])))
last_double_return_token_indices = last_double_return_token_indices.reshape(
batch_encoding["input_ids"].shape[0], -1
)[:, -1]
batch_indices = batch_indices.reshape(batch_encoding["input_ids"].shape[0], -1)[:, -1]
assistant_crop_start = (
last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576) - 4
)
assistant_crop_end = last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576)
attention_mask_assistant_crop_start = last_double_return_token_indices - 4
attention_mask_assistant_crop_end = last_double_return_token_indices
else:
raise ValueError(f"Unsupported data type: {data_type}")
"""
# modified code for i2v mode, support transformers >= 4.47
assert use_attention_mask is True, "Attention mask is True required for backward compatibility."
batch_encoding = batch_encoding.to(device)
attention_mask = batch_encoding["attention_mask"]
outputs = self.model(**batch_encoding, output_hidden_states=True)
if hidden_state_skip_layer is not None:
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
# Real last hidden state already has layer norm applied. So here we only apply it
# for intermediate layers.
if hidden_state_skip_layer > 0 and self.apply_final_norm:
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
else:
last_hidden_state = outputs[self.output_key]
if self.use_template:
if data_type == "video":
crop_start = self.prompt_template_video.get("crop_start", -1)
text_crop_start = crop_start - 1 + self.prompt_template_video.get("image_emb_len", 576)
image_crop_start = self.prompt_template_video.get("image_emb_start", 5)
image_crop_end = self.prompt_template_video.get("image_emb_end", 581)
batch_indices, last_double_return_token_indices = torch.where(
batch_encoding["input_ids"] == self.prompt_template_video.get("double_return_token_id", 271)
)
if last_double_return_token_indices.shape[0] == 3:
# in case the prompt is too long
last_double_return_token_indices = torch.cat(
(last_double_return_token_indices, torch.tensor([batch_encoding["input_ids"].shape[-1]]))
)
batch_indices = torch.cat((batch_indices, torch.tensor([0])))
last_double_return_token_indices = last_double_return_token_indices.reshape(
batch_encoding["input_ids"].shape[0], -1
)[:, -1]
batch_indices = batch_indices.reshape(batch_encoding["input_ids"].shape[0], -1)[:, -1]
# with transformers >= 4.47, <image> token in input_ids is already expanded to image embed size.
# so we don't need to add image_emb_len to the last_double_return_token_indices.
assistant_crop_start = last_double_return_token_indices - 4
assistant_crop_end = last_double_return_token_indices
# attention mask is also expanded to image embed size, so the same as hidden state.
attention_mask_assistant_crop_start = last_double_return_token_indices - 4
attention_mask_assistant_crop_end = last_double_return_token_indices
else:
raise ValueError(f"Unsupported data type: {data_type}")
text_last_hidden_state = []
text_attention_mask = []
image_last_hidden_state = []
image_attention_mask = []
for i in range(batch_encoding["input_ids"].shape[0]):
text_last_hidden_state.append(
torch.cat(
[
last_hidden_state[i, text_crop_start : assistant_crop_start[i].item()],
last_hidden_state[i, assistant_crop_end[i].item() :],
]
)
)
text_attention_mask.append(
torch.cat(
[
attention_mask[
i,
text_crop_start : attention_mask_assistant_crop_start[i].item(), # this line is modified
],
attention_mask[i, attention_mask_assistant_crop_end[i].item() :],
]
)
if use_attention_mask
else None
)
image_last_hidden_state.append(last_hidden_state[i, image_crop_start:image_crop_end])
image_attention_mask.append(
torch.ones(image_last_hidden_state[-1].shape[0]).to(last_hidden_state.device).to(attention_mask.dtype)
if use_attention_mask
else None
)
text_last_hidden_state = torch.stack(text_last_hidden_state)
text_attention_mask = torch.stack(text_attention_mask)
image_last_hidden_state = torch.stack(image_last_hidden_state)
image_attention_mask = torch.stack(image_attention_mask)
if semantic_images is not None and 0 < self.image_embed_interleave < 6:
image_last_hidden_state = image_last_hidden_state[:, :: self.image_embed_interleave, :]
image_attention_mask = image_attention_mask[:, :: self.image_embed_interleave]
assert (
text_last_hidden_state.shape[0] == text_attention_mask.shape[0]
and image_last_hidden_state.shape[0] == image_attention_mask.shape[0]
)
last_hidden_state = torch.cat([image_last_hidden_state, text_last_hidden_state], dim=1)
attention_mask = torch.cat([image_attention_mask, text_attention_mask], dim=1)
if output_hidden_states:
return TextEncoderModelOutput(
last_hidden_state,
attention_mask,
hidden_states_list=outputs.hidden_states,
)
return TextEncoderModelOutput(last_hidden_state, attention_mask)
def forward(
self,
text,
use_attention_mask=None,
output_hidden_states=False,
do_sample=False,
hidden_state_skip_layer=None,
return_texts=False,
):
batch_encoding = self.text2tokens(text)
return self.encode(
batch_encoding,
use_attention_mask=use_attention_mask,
output_hidden_states=output_hidden_states,
do_sample=do_sample,
hidden_state_skip_layer=hidden_state_skip_layer,
return_texts=return_texts,
)
# region HunyanVideo architecture
def load_text_encoder_1(
text_encoder_dir: str,
device: torch.device,
fp8_llm: bool,
dtype: Optional[Union[str, torch.dtype]] = None,
i2v_mode: bool = False,
image_embed_interleave: int = None,
clip_vision_path: Optional[str] = None,
) -> TextEncoder:
"""
clip_vision_path is required for i2v mode with .safetensors file.
"""
text_encoder_dtype = dtype or torch.float16
text_encoder_type = "llm" if not i2v_mode else "llm-i2v"
text_len = 256
hidden_state_skip_layer = 2
apply_final_norm = False
reproduce = False
prompt_template = "dit-llm-encode" if not i2v_mode else "dit-llm-encode-i2v"
prompt_template = PROMPT_TEMPLATE[prompt_template]
prompt_template_video = "dit-llm-encode-video" if not i2v_mode else "dit-llm-encode-video-i2v"
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video]
crop_start = prompt_template_video["crop_start"] # .get("crop_start", 0)
max_length = text_len + crop_start
text_encoder_1 = TextEncoder(
text_encoder_type=text_encoder_type,
max_length=max_length,
text_encoder_dtype=text_encoder_dtype,
text_encoder_path=text_encoder_dir,
clip_vision_path=clip_vision_path,
tokenizer_type=text_encoder_type,
i2v_mode=i2v_mode,
prompt_template=prompt_template,
prompt_template_video=prompt_template_video,
hidden_state_skip_layer=hidden_state_skip_layer,
apply_final_norm=apply_final_norm,
reproduce=reproduce,
image_embed_interleave=image_embed_interleave,
)
text_encoder_1.eval()
if fp8_llm:
org_dtype = text_encoder_1.dtype
logger.info(f"Moving and casting text encoder to {device} and torch.float8_e4m3fn")
text_encoder_1.to(device=device, dtype=torch.float8_e4m3fn)
# prepare LLM for fp8
def prepare_fp8(llama_model: LlamaModel, target_dtype):
def forward_hook(module):
def forward(hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + module.variance_epsilon)
return module.weight.to(input_dtype) * hidden_states.to(input_dtype)
return forward
for module in llama_model.modules():
if module.__class__.__name__ in ["Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["LlamaRMSNorm"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
prepare_fp8(text_encoder_1.model, org_dtype)
else:
text_encoder_1.to(device=device)
return text_encoder_1
def load_text_encoder_2(
text_encoder_dir: str, device: torch.device, dtype: Optional[Union[str, torch.dtype]] = None
) -> TextEncoder:
text_encoder_dtype = dtype or torch.float16
reproduce = False
text_encoder_2_type = "clipL"
text_len_2 = 77
text_encoder_2 = TextEncoder(
text_encoder_type=text_encoder_2_type,
max_length=text_len_2,
text_encoder_dtype=text_encoder_dtype,
text_encoder_path=text_encoder_dir,
tokenizer_type=text_encoder_2_type,
reproduce=reproduce,
)
text_encoder_2.eval()
text_encoder_2.to(device=device)
return text_encoder_2
# endregion
if __name__ == "__main__":
# Test the text encoder
import argparse
from utils.model_utils import str_to_dtype
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if False:
# This is a test script to check if the text encoder is loaded correctly and the outputs are the same.
# Compare two directories or files of text encoders: Offcial ckpt and single file ckpt.
parser = argparse.ArgumentParser()
parser.add_argument("type", type=str, help="Text Encoder type")
parser.add_argument("path1", type=str, help="Text Encoder directory or file 1")
parser.add_argument("path2", type=str, help="Text Encoder directory or file 2")
parser.add_argument("--clip_vision_path1", type=str, default=None, help="Vision Encoder directory or file 1")
parser.add_argument("--clip_vision_path2", type=str, default=None, help="Vision Encoder directory or file 2")
parser.add_argument("--image_path", type=str, default=None, help="Image path, if set, use i2v mode")
parser.add_argument("--image_embed_interleave", type=int, default=None, help="Image embed interleave")
parser.add_argument("--dtype", type=str, default=None, help="Data type for Text Encoder")
args = parser.parse_args()
dtype = str_to_dtype(args.dtype) if args.dtype is not None else torch.float16
i2v_mode = args.image_path is not None
if i2v_mode:
from PIL import Image
image = Image.open(args.image_path).convert("RGB")
semantic_images = [image]
else:
semantic_images = None
if args.type == "clipL":
text_encoder_1 = load_text_encoder_2(args.path1, device, dtype)
text_encoder_2nd = load_text_encoder_2(args.path2, "cpu", dtype)
elif args.type == "llm" or args.type == "llm-i2v":
print("loading text encoder 1st")
text_encoder_1 = load_text_encoder_1(
args.path1, device, False, dtype, i2v_mode, args.image_embed_interleave, args.clip_vision_path1
)
print("loading text encoder 2nd")
text_encoder_2nd = load_text_encoder_1(
args.path2, "cpu", False, dtype, i2v_mode, args.image_embed_interleave, args.clip_vision_path2
)
print(f"1st Text Encoder dtype: {text_encoder_1.dtype}")
print(f"2nd Text Encoder dtype: {text_encoder_2nd.dtype}")
prompt = "A cat sitting on a table"
data_type = "video" # video only, image is not supported
text_inputs_new = text_encoder_1.text2tokens(prompt, data_type=data_type)
text_inputs_2nd = text_encoder_2nd.text2tokens(prompt, data_type=data_type)
print(text_inputs_new)
assert torch.allclose(text_inputs_new["input_ids"], text_inputs_2nd["input_ids"])
with torch.no_grad():
print("Encoding with 1st text encoder")
prompt_outputs_new = text_encoder_1.encode(text_inputs_new, data_type=data_type, semantic_images=semantic_images)
del text_encoder_1
text_encoder_2nd.to(device=device)
with torch.no_grad():
prompt_outputs_2nd = text_encoder_2nd.encode(text_inputs_new, data_type=data_type, semantic_images=semantic_images)
# prompt_outputs.hidden_state, prompt_outputs.attention_mask
assert torch.allclose(prompt_outputs_new.hidden_state, prompt_outputs_2nd.hidden_state)
print("Hidden states are the same.")
assert torch.allclose(prompt_outputs_new.attention_mask, prompt_outputs_2nd.attention_mask)
print("Attention masks are the same.")
print("All outputs are the same.")
if True:
# Test Llava with image in old transformers and new transformers
# works only transformers < 4.47 (supports new behavior and legacy behavior)
parser = argparse.ArgumentParser()
parser.add_argument("path1", type=str, help="Text Encoder directory or file 1")
parser.add_argument("--clip_vision_path1", type=str, default=None, help="Vision Encoder directory or file 1")
parser.add_argument("--image_path", type=str, default=None, help="Image path, if set, use i2v mode")
parser.add_argument("--dtype", type=str, default=None, help="Data type for Text Encoder")
args = parser.parse_args()
dtype = str_to_dtype(args.dtype) if args.dtype is not None else torch.float16
from PIL import Image
image = Image.open(args.image_path).convert("RGB")
semantic_images = [image]
text_encoder_1 = load_text_encoder_1(args.path1, device, False, dtype, True, 4, args.clip_vision_path1)
prompt = "A short animated video of a girl standing in a classroom. The girl is wearing a sailor uniform. The upper body of the girl is shown, and the girl is talking to the camera with a rich expression and using gestures. The girl has a short black bob hairstyle, and the inner color of her hair is blue. She has red eyes and wears silver-framed glasses. High quality animated video, studio quality."
# prompt = (
# "A short animated video of a girl standing in a classroom. The girl is wearing a sailor uniform. The upper body of the girl is shown, and the girl is talking to the camera with a rich expression and using gestures. The girl has a short black bob hairstyle, and the inner color of her hair is blue. She has red eyes and wears silver-framed glasses. High quality animated video, studio quality. "
# "A short animated video of a girl standing in a classroom. The girl is wearing a sailor uniform. The upper body of the girl is shown, and the girl is talking to the camera with a rich expression and using gestures. The girl has a short black bob hairstyle, and the inner color of her hair is blue. She has red eyes and wears silver-framed glasses. High quality animated video, studio quality. "
# "A short animated video of a girl standing in a classroom. The girl is wearing a sailor uniform. The upper body of the girl is shown, and the girl is talking to the camera with a rich expression and using gestures. The girl has a short black bob hairstyle, and the inner color of her hair is blue. She has red eyes and wears silver-framed glasses. High quality animated video, studio quality. "
# "A short animated video of a girl standing in a classroom. The girl is wearing a sailor uniform. The upper body of the girl is shown, and the girl is talking to the camera with a rich expression and using gestures. The girl has a short black bob hairstyle, and the inner color of her hair is blue. She has red eyes and wears silver-framed glasses. High quality animated video, studio quality. "
# )
data_type = "video" # video only, image is not supported
### Test the new behavior of text encoder
print("Encoding with text encoder, new behavior")
text_inputs_new = text_encoder_1.text2tokens(prompt, data_type=data_type, semantic_images=semantic_images).to(device)
print(f"text_inputs_new keys: {text_inputs_new.keys()}")
print(f"input_ids shape: {text_inputs_new['input_ids'].shape}")
print(f"attention_mask shape: {text_inputs_new['attention_mask'].shape}")
with torch.no_grad():
prompt_outputs_new = text_encoder_1.model(**text_inputs_new, output_hidden_states=True)
### Test the old behavior of text encoder
print("Encoding with text encoder, old behavior")
text_encoder_1.text_encoder_type = "llm" # force old behavior, call tokenizer instead of processor
text_inputs_old = text_encoder_1.text2tokens(prompt, data_type=data_type).to(device)
print(f"text_inputs_old keys: {text_inputs_old.keys()}")
print(f"input_ids shape: {text_inputs_old['input_ids'].shape}")
print(f"attention_mask shape: {text_inputs_old['attention_mask'].shape}")
with torch.no_grad():
# original code from HunyuanVideo
clip_processor = CLIPImageProcessor.from_pretrained(LLAVA_HUGGINGFACE_MODEL_ID)
image_outputs = clip_processor(semantic_images, return_tensors="pt")["pixel_values"].to(device)
attention_mask = text_inputs_old["attention_mask"].to(device) # if use_attention_mask else None
prompt_outputs_old = text_encoder_1.model(
input_ids=text_inputs_old["input_ids"].to(device),
attention_mask=attention_mask,
output_hidden_states=True,
pixel_values=image_outputs,
)
### calc crop position
crop_start = text_encoder_1.prompt_template_video.get("crop_start", -1)
text_crop_start = crop_start - 1 + text_encoder_1.prompt_template_video.get("image_emb_len", 576)
image_crop_start = text_encoder_1.prompt_template_video.get("image_emb_start", 5)
image_crop_end = text_encoder_1.prompt_template_video.get("image_emb_end", 581)
print(f"crop_start: {crop_start}")
print(f"text_crop_start: {text_crop_start}, image_crop_start: {image_crop_start}, image_crop_end: {image_crop_end}")
# we test with a single prompt, so the batch_indices will be 0
def get_batch_and_last_double_return_token_indices(batch_encoding):
batch_indices, last_double_return_token_indices = torch.where(
batch_encoding["input_ids"] == text_encoder_1.prompt_template_video.get("double_return_token_id", 271)
)
if last_double_return_token_indices.shape[0] == 3:
# in case the prompt is too long
last_double_return_token_indices = torch.cat(
(last_double_return_token_indices, torch.tensor([batch_encoding["input_ids"].shape[-1]], device=device))
)
batch_indices = torch.cat((batch_indices, torch.tensor([0], device=device)))
return batch_indices, last_double_return_token_indices
batch_indices_new, last_double_return_token_indices_new = get_batch_and_last_double_return_token_indices(text_inputs_new)
batch_indices_old, last_double_return_token_indices_old = get_batch_and_last_double_return_token_indices(text_inputs_old)
print(
f"batch_indices_new: {batch_indices_new}, last_double_return_token_indices_new: {last_double_return_token_indices_new}"
)
print(
f"batch_indices_old: {batch_indices_old}, last_double_return_token_indices_old: {last_double_return_token_indices_old}"
)
def calc_attn_crop_new(batch_encoding, batch_indices, last_double_return_token_indices):
last_double_return_token_indices = last_double_return_token_indices.reshape(batch_encoding["input_ids"].shape[0], -1)[
:, -1
]
print(f"new last_double_return_token_indices: {last_double_return_token_indices}")
batch_indices = batch_indices.reshape(batch_encoding["input_ids"].shape[0], -1)[:, -1]
assistant_crop_start = last_double_return_token_indices - 4
assistant_crop_end = last_double_return_token_indices
attention_mask_assistant_crop_start = last_double_return_token_indices - 4
attention_mask_assistant_crop_end = last_double_return_token_indices
return assistant_crop_start, assistant_crop_end, attention_mask_assistant_crop_start, attention_mask_assistant_crop_end
def calc_attn_crop(batch_encoding, batch_indices, last_double_return_token_indices):
last_double_return_token_indices = last_double_return_token_indices.reshape(batch_encoding["input_ids"].shape[0], -1)[
:, -1
]
print(f"old last_double_return_token_indices: {last_double_return_token_indices}")
batch_indices = batch_indices.reshape(batch_encoding["input_ids"].shape[0], -1)[:, -1]
assistant_crop_start = (
last_double_return_token_indices - 1 + text_encoder_1.prompt_template_video.get("image_emb_len", 576) - 4
)
assistant_crop_end = (
last_double_return_token_indices - 1 + text_encoder_1.prompt_template_video.get("image_emb_len", 576)
)
attention_mask_assistant_crop_start = last_double_return_token_indices - 4
attention_mask_assistant_crop_end = last_double_return_token_indices
return assistant_crop_start, assistant_crop_end, attention_mask_assistant_crop_start, attention_mask_assistant_crop_end
(
assistant_crop_start_new,
assistant_crop_end_new,
attention_mask_assistant_crop_start_new,
attention_mask_assistant_crop_end_new,
) = calc_attn_crop_new(text_inputs_new, batch_indices_new, last_double_return_token_indices_new)
(
assistant_crop_start_old,
assistant_crop_end_old,
attention_mask_assistant_crop_start_old,
attention_mask_assistant_crop_end_old,
) = calc_attn_crop(text_inputs_old, batch_indices_old, last_double_return_token_indices_old)
print("Assistant crop start and end:")
print(
"new",
assistant_crop_start_new,
assistant_crop_end_new,
attention_mask_assistant_crop_start_new,
attention_mask_assistant_crop_end_new,
)
print(
"old",
assistant_crop_start_old,
assistant_crop_end_old,
attention_mask_assistant_crop_start_old,
attention_mask_assistant_crop_end_old,
)
### Compare the outputs of the two models
hidden_state_new = prompt_outputs_new.hidden_states[-(2 + 1)]
hidden_state_old = prompt_outputs_old.hidden_states[-(2 + 1)]
def crop_hidden_state_and_attn_mask(
hidden_state,
attention_mask,
text_crop_start,
crop_start,
assistant_crop_start,
assistant_crop_end,
attention_mask_assistant_crop_start,
attention_mask_assistant_crop_end,
):
hidden_state = torch.cat([hidden_state[0, text_crop_start:assistant_crop_start], hidden_state[0, assistant_crop_end:]])
print(f"cropping attention mask: {attention_mask.shape}, {crop_start}, {assistant_crop_start}, {assistant_crop_end}")
attention_mask = torch.cat(
[
attention_mask[0, crop_start:attention_mask_assistant_crop_start],
attention_mask[0, attention_mask_assistant_crop_end:],
]
)
return hidden_state, attention_mask
with torch.no_grad():
hidden_state_new = text_encoder_1.model.final_layer_norm(hidden_state_new)
hidden_state_old = text_encoder_1.model.final_layer_norm(hidden_state_old)
hidden_state_new, attention_mask_new = crop_hidden_state_and_attn_mask(
hidden_state_new,
text_inputs_new["attention_mask"],
text_crop_start,
text_crop_start,
assistant_crop_start_new,
assistant_crop_end_new,
attention_mask_assistant_crop_start_new,
attention_mask_assistant_crop_end_new,
)
hidden_state_old, attention_mask_old = crop_hidden_state_and_attn_mask(
hidden_state_old,
text_inputs_old["attention_mask"],
text_crop_start,
crop_start,
assistant_crop_start_old,
assistant_crop_end_old,
attention_mask_assistant_crop_start_old,
attention_mask_assistant_crop_end_old,
)
assert (
hidden_state_new.shape == hidden_state_old.shape
), f"hidden state shape is not the same: {hidden_state_new.shape} vs {hidden_state_old.shape}"
assert (
hidden_state_new.dtype == hidden_state_old.dtype
), f"hidden state dtype is not the same: {hidden_state_new.dtype} vs {hidden_state_old.dtype}"
print(f"hidden state shape: {hidden_state_new.shape}")
diff = (hidden_state_new - hidden_state_old).abs()
print(f"hidden state diff: {diff.max()}, {diff.mean()}, {diff.std()}")
print(hidden_state_new[-20:, 0])
print(hidden_state_old[-20:, 0])
print(diff[-20:, 0])
assert (
attention_mask_new.shape == attention_mask_old.shape
), f"attention mask shape is not the same: {attention_mask_new.shape} vs {attention_mask_old.shape}"
assert (
attention_mask_new.dtype == attention_mask_old.dtype
), f"attention mask dtype is not the same: {attention_mask_new.dtype} vs {attention_mask_old.dtype}"
print(f"attention mask shape: {attention_mask_new.shape}")
assert torch.allclose(
attention_mask_new, attention_mask_old
), f"attention mask is not the same. diff: {(attention_mask_new - attention_mask_old).abs().max()}"
print(f"final attention mask: {attention_mask_new}")
# assert torch.allclose(hidden_state_new, hidden_state_old), f"hidden state is not the same. diff: {diff}"
import numpy as np
diff = diff.float().cpu().numpy() # (934, 4096)
diff = diff.mean(axis=1)
attn_mask_np = attention_mask_new.float().cpu().numpy()
diff = diff * attn_mask_np
assert diff.max() < 1e-3, f"hidden state diff is too large: {diff.max()}"
# # show as bar plot
# import matplotlib.pyplot as plt
# plt.bar(range(diff.shape[0]), diff)
# plt.title("Hidden state diff")
# plt.xlabel("Hidden state index")
# plt.ylabel("Diff")
# plt.show()
|