Spaces:
Running
Running
File size: 83,013 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 |
import argparse
from datetime import datetime
import gc
import json
import random
import os
import re
import time
import math
import copy
from typing import Tuple, Optional, List, Union, Any, Dict
from rich.traceback import install as install_rich_tracebacks
import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from PIL import Image
import cv2
import numpy as np
import torchvision.transforms.functional as TF
from transformers import LlamaModel
from tqdm import tqdm
from rich_argparse import RichHelpFormatter
from networks import lora_framepack
from hunyuan_model.autoencoder_kl_causal_3d import AutoencoderKLCausal3D
from frame_pack import hunyuan
from frame_pack.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked, load_packed_model
from frame_pack.utils import crop_or_pad_yield_mask, resize_and_center_crop, soft_append_bcthw
from frame_pack.bucket_tools import find_nearest_bucket
from frame_pack.clip_vision import hf_clip_vision_encode
from frame_pack.k_diffusion_hunyuan import sample_hunyuan
from dataset import image_video_dataset
try:
from lycoris.kohya import create_network_from_weights
except:
pass
from utils.device_utils import clean_memory_on_device
from base_hv_generate_video import save_images_grid, save_videos_grid, synchronize_device
from base_wan_generate_video import merge_lora_weights
from frame_pack.framepack_utils import load_vae, load_text_encoder1, load_text_encoder2, load_image_encoders
from dataset.image_video_dataset import load_video
from blissful_tuner.blissful_args import add_blissful_args, parse_blissful_args
from blissful_tuner.video_processing_common import save_videos_grid_advanced
from blissful_tuner.latent_preview import LatentPreviewer
import logging
from diffusers_helper.utils import save_bcthw_as_mp4
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class GenerationSettings:
def __init__(self, device: torch.device, dit_weight_dtype: Optional[torch.dtype] = None):
self.device = device
self.dit_weight_dtype = dit_weight_dtype
def parse_args() -> argparse.Namespace:
"""parse command line arguments"""
install_rich_tracebacks()
parser = argparse.ArgumentParser(description="Framepack inference script", formatter_class=RichHelpFormatter)
# WAN arguments
# parser.add_argument("--ckpt_dir", type=str, default=None, help="The path to the checkpoint directory (Wan 2.1 official).")
parser.add_argument("--is_f1", action="store_true", help="Use the FramePack F1 model specific logic.")
parser.add_argument(
"--sample_solver", type=str, default="unipc", choices=["unipc", "dpm++", "vanilla"], help="The solver used to sample."
)
parser.add_argument("--dit", type=str, default=None, help="DiT directory or path. Overrides --model_version if specified.")
parser.add_argument(
"--model_version", type=str, default="original", choices=["original", "f1"], help="Select the FramePack model version to use ('original' or 'f1'). Ignored if --dit is specified."
)
parser.add_argument("--vae", type=str, default=None, help="VAE directory or path")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory or path")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory or path")
parser.add_argument("--image_encoder", type=str, required=True, help="Image Encoder directory or path")
# LoRA
parser.add_argument("--lora_weight", type=str, nargs="*", required=False, default=None, help="LoRA weight path")
parser.add_argument("--lora_multiplier", type=float, nargs="*", default=1.0, help="LoRA multiplier")
parser.add_argument("--include_patterns", type=str, nargs="*", default=None, help="LoRA module include patterns")
parser.add_argument("--exclude_patterns", type=str, nargs="*", default=None, help="LoRA module exclude patterns")
parser.add_argument(
"--save_merged_model",
type=str,
default=None,
help="Save merged model to path. If specified, no inference will be performed.",
)
# inference
parser.add_argument(
"--prompt",
type=str,
default=None,
help="prompt for generation. If `;;;` is used, it will be split into sections. Example: `section_index:prompt` or "
"`section_index:prompt;;;section_index:prompt;;;...`, section_index can be `0` or `-1` or `0-2`, `-1` means last section, `0-2` means from 0 to 2 (inclusive).",
)
parser.add_argument(
"--negative_prompt",
type=str,
default=None,
help="negative prompt for generation, default is empty string. should not change.",
)
parser.add_argument("--video_size", type=int, nargs=2, default=[256, 256], help="video size, height and width")
parser.add_argument("--video_seconds", type=float, default=5.0, help="video length, Default is 5.0 seconds")
parser.add_argument("--fps", type=int, default=30, help="video fps, Default is 30")
parser.add_argument("--infer_steps", type=int, default=25, help="number of inference steps, Default is 25")
parser.add_argument("--save_path", type=str, required=True, help="path to save generated video")
parser.add_argument("--seed", type=str, default=None, help="Seed for evaluation.")
# parser.add_argument(
# "--cpu_noise", action="store_true", help="Use CPU to generate noise (compatible with ComfyUI). Default is False."
# )
parser.add_argument("--latent_window_size", type=int, default=9, help="latent window size, default is 9. should not change.")
parser.add_argument(
"--embedded_cfg_scale", type=float, default=10.0, help="Embeded CFG scale (distilled CFG Scale), default is 10.0"
)
parser.add_argument(
"--guidance_scale",
type=float,
default=1.0,
help="Guidance scale for classifier free guidance. Default is 1.0, should not change.",
)
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="CFG Re-scale, default is 0.0. Should not change.")
# parser.add_argument("--video_path", type=str, default=None, help="path to video for video2video inference")
parser.add_argument(
"--image_path",
type=str,
default=None,
help="path to image for image2video inference. If `;;;` is used, it will be used as section images. The notation is same as `--prompt`.",
)
parser.add_argument("--end_image_path", type=str, default=None, help="path to end image for image2video inference")
# parser.add_argument(
# "--control_path",
# type=str,
# default=None,
# help="path to control video for inference with controlnet. video file or directory with images",
# )
# parser.add_argument("--trim_tail_frames", type=int, default=0, help="trim tail N frames from the video before saving")
# # Flow Matching
# parser.add_argument(
# "--flow_shift",
# type=float,
# default=None,
# help="Shift factor for flow matching schedulers. Default depends on task.",
# )
parser.add_argument("--fp8", action="store_true", help="use fp8 for DiT model")
parser.add_argument("--fp8_scaled", action="store_true", help="use scaled fp8 for DiT, only for fp8")
parser.add_argument("--fp8_fast", action="store_true", help="Enable fast FP8 arithmetic (RTX 4XXX+), only for fp8_scaled mode and can degrade quality slightly but offers noticeable speedup")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--device", type=str, default=None, help="device to use for inference. If None, use CUDA if available, otherwise use CPU"
)
parser.add_argument(
"--attn_mode",
type=str,
default="torch",
choices=["flash", "torch", "sageattn", "xformers", "sdpa"], # "flash2", "flash3",
help="attention mode",
)
parser.add_argument("--vae_chunk_size", type=int, default=None, help="chunk size for CausalConv3d in VAE")
parser.add_argument(
"--vae_spatial_tile_sample_min_size", type=int, default=None, help="spatial tile sample min size for VAE, default 256"
)
parser.add_argument("--bulk_decode", action="store_true", help="decode all frames at once")
parser.add_argument("--blocks_to_swap", type=int, default=0, help="number of blocks to swap in the model")
parser.add_argument(
"--output_type", type=str, default="video", choices=["video", "images", "latent", "both"], help="output type"
)
parser.add_argument("--no_metadata", action="store_true", help="do not save metadata")
parser.add_argument("--latent_path", type=str, nargs="*", default=None, help="path to latent for decode. no inference")
parser.add_argument("--lycoris", action="store_true", help="use lycoris for inference")
parser.add_argument("--compile", action="store_true", help="Enable torch.compile")
parser.add_argument(
"--compile_args",
nargs=4,
metavar=("BACKEND", "MODE", "DYNAMIC", "FULLGRAPH"),
default=["inductor", "max-autotune-no-cudagraphs", "False", "False"],
help="Torch.compile settings",
)
# New arguments for batch and interactive modes
parser.add_argument("--from_file", type=str, default=None, help="Read prompts from a file")
parser.add_argument("--interactive", action="store_true", help="Interactive mode: read prompts from console")
#parser.add_argument("--preview_latent_every", type=int, default=None, help="Preview latent every N sections")
parser.add_argument("--preview_suffix", type=str, default=None, help="Unique suffix for preview files to avoid conflicts in concurrent runs.")
parser.add_argument("--full_preview", action="store_true", help="Save full intermediate video previews instead of latent previews.")
# TeaCache arguments
parser.add_argument("--use_teacache", action="store_true", help="Enable TeaCache for faster generation.")
parser.add_argument("--teacache_steps", type=int, default=25, help="Number of steps for TeaCache initialization (should match --infer_steps).")
parser.add_argument("--teacache_thresh", type=float, default=0.15, help="Relative L1 distance threshold for TeaCache skipping.")
parser.add_argument(
"--video_sections",
type=int,
default=None,
help="number of video sections, Default is None (auto calculate from video seconds). Overrides --video_seconds if set.",
)
parser = add_blissful_args(parser)
args = parser.parse_args()
args = parse_blissful_args(args)
# Validate arguments
if args.from_file and args.interactive:
raise ValueError("Cannot use both --from_file and --interactive at the same time")
if args.prompt is None and not args.from_file and not args.interactive:
raise ValueError("Either --prompt, --from_file or --interactive must be specified")
return args
def parse_prompt_line(line: str) -> Dict[str, Any]:
"""Parse a prompt line into a dictionary of argument overrides
Args:
line: Prompt line with options
Returns:
Dict[str, Any]: Dictionary of argument overrides
"""
# TODO common function with hv_train_network.line_to_prompt_dict
parts = line.split(" --")
prompt = parts[0].strip()
# Create dictionary of overrides
overrides = {"prompt": prompt}
for part in parts[1:]:
if not part.strip():
continue
option_parts = part.split(" ", 1)
option = option_parts[0].strip()
value = option_parts[1].strip() if len(option_parts) > 1 else ""
# Map options to argument names
if option == "w":
overrides["video_size_width"] = int(value)
elif option == "h":
overrides["video_size_height"] = int(value)
elif option == "f":
overrides["video_seconds"] = float(value)
elif option == "d":
overrides["seed"] = int(value)
elif option == "s":
overrides["infer_steps"] = int(value)
elif option == "g" or option == "l":
overrides["guidance_scale"] = float(value)
# elif option == "fs":
# overrides["flow_shift"] = float(value)
elif option == "i":
overrides["image_path"] = value
elif option == "cn":
overrides["control_path"] = value
elif option == "n":
overrides["negative_prompt"] = value
return overrides
def apply_overrides(args: argparse.Namespace, overrides: Dict[str, Any]) -> argparse.Namespace:
"""Apply overrides to args
Args:
args: Original arguments
overrides: Dictionary of overrides
Returns:
argparse.Namespace: New arguments with overrides applied
"""
args_copy = copy.deepcopy(args)
for key, value in overrides.items():
if key == "video_size_width":
args_copy.video_size[1] = value
elif key == "video_size_height":
args_copy.video_size[0] = value
else:
setattr(args_copy, key, value)
return args_copy
def check_inputs(args: argparse.Namespace) -> Tuple[int, int, float]:
"""Validate video size and length
Args:
args: command line arguments
Returns:
Tuple[int, int, float]: (height, width, video_seconds)
"""
height = args.video_size[0]
width = args.video_size[1]
if args.video_sections is not None:
video_seconds = (args.video_sections * (args.latent_window_size * 4) + 1) / args.fps
logger.info(f"--video_sections is set to {args.video_sections}. Calculated video_seconds: {video_seconds:.2f}s")
args.video_seconds = video_seconds
else:
video_seconds = args.video_seconds
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
return height, width, video_seconds
# region DiT model
def get_dit_dtype(args: argparse.Namespace) -> torch.dtype:
dit_dtype = torch.bfloat16
if args.precision == "fp16":
dit_dtype = torch.float16
elif args.precision == "fp32":
dit_dtype = torch.float32
return dit_dtype
def load_dit_model(args: argparse.Namespace, device: torch.device) -> HunyuanVideoTransformer3DModelPacked:
"""load DiT model
Args:
args: command line arguments
device: device to use
Returns:
HunyuanVideoTransformer3DModelPacked: DiT model
"""
loading_device = "cpu"
# Adjust loading device logic based on F1 requirements if necessary
if args.blocks_to_swap == 0 and not args.fp8_scaled and args.lora_weight is None:
loading_device = device
# F1 model expects bfloat16 according to demo
# However, load_packed_model might handle dtype internally based on checkpoint.
# Let's keep the call as is for now.
logger.info(f"Loading DiT model (Class: HunyuanVideoTransformer3DModelPacked) for {'F1' if args.is_f1 else 'Standard'} mode.")
model = load_packed_model(
device=device,
dit_path=args.dit,
attn_mode=args.attn_mode,
loading_device=loading_device,
# Pass fp8_scaled and split_attn if load_packed_model supports them directly
# fp8_scaled=args.fp8_scaled, # Assuming load_packed_model handles this
# split_attn=False, # F1 demo doesn't use split_attn
)
return model
def optimize_model(model: HunyuanVideoTransformer3DModelPacked, args: argparse.Namespace, device: torch.device) -> None:
"""optimize the model (FP8 conversion, device move etc.)
Args:
model: dit model
args: command line arguments
device: device to use
"""
if args.fp8_scaled:
# load state dict as-is and optimize to fp8
state_dict = model.state_dict()
# if no blocks to swap, we can move the weights to GPU after optimization on GPU (omit redundant CPU->GPU copy)
move_to_device = args.blocks_to_swap == 0 # if blocks_to_swap > 0, we will keep the model on CPU
state_dict = model.fp8_optimization(state_dict, device, move_to_device, use_scaled_mm=args.fp8_fast) # args.fp8_fast)
info = model.load_state_dict(state_dict, strict=True, assign=True)
logger.info(f"Loaded FP8 optimized weights: {info}")
if args.blocks_to_swap == 0:
model.to(device) # make sure all parameters are on the right device (e.g. RoPE etc.)
else:
# simple cast to dit_dtype
target_dtype = None # load as-is (dit_weight_dtype == dtype of the weights in state_dict)
target_device = None
if args.fp8:
target_dtype = torch.float8e4m3fn
if args.blocks_to_swap == 0:
logger.info(f"Move model to device: {device}")
target_device = device
if target_device is not None and target_dtype is not None:
model.to(target_device, target_dtype) # move and cast at the same time. this reduces redundant copy operations
if args.compile:
compile_backend, compile_mode, compile_dynamic, compile_fullgraph = args.compile_args
logger.info(
f"Torch Compiling[Backend: {compile_backend}; Mode: {compile_mode}; Dynamic: {compile_dynamic}; Fullgraph: {compile_fullgraph}]"
)
torch._dynamo.config.cache_size_limit = 32
for i in range(len(model.transformer_blocks)):
model.transformer_blocks[i] = torch.compile(
model.transformer_blocks[i],
backend=compile_backend,
mode=compile_mode,
dynamic=compile_dynamic.lower() in "true",
fullgraph=compile_fullgraph.lower() in "true",
)
if args.blocks_to_swap > 0:
logger.info(f"Enable swap {args.blocks_to_swap} blocks to CPU from device: {device}")
model.enable_block_swap(args.blocks_to_swap, device, supports_backward=False)
model.move_to_device_except_swap_blocks(device)
model.prepare_block_swap_before_forward()
else:
# make sure the model is on the right device
model.to(device)
model.eval().requires_grad_(False)
clean_memory_on_device(device)
# endregion
def decode_latent(
latent_window_size: int,
total_latent_sections: int,
bulk_decode: bool,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
) -> torch.Tensor:
logger.info(f"Decoding video...")
if latent.ndim == 4:
latent = latent.unsqueeze(0) # add batch dimension
vae.to(device)
if not bulk_decode:
latent_window_size = latent_window_size # default is 9
# total_latent_sections = (args.video_seconds * 30) / (latent_window_size * 4)
# total_latent_sections = int(max(round(total_latent_sections), 1))
num_frames = latent_window_size * 4 - 3
latents_to_decode = []
latent_frame_index = 0
for i in range(total_latent_sections - 1, -1, -1):
is_last_section = i == total_latent_sections - 1
generated_latent_frames = (num_frames + 3) // 4 + (1 if is_last_section else 0)
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
section_latent = latent[:, :, latent_frame_index : latent_frame_index + section_latent_frames, :, :]
latents_to_decode.append(section_latent)
latent_frame_index += generated_latent_frames
latents_to_decode = latents_to_decode[::-1] # reverse the order of latents to decode
history_pixels = None
for latent in tqdm(latents_to_decode):
if history_pixels is None:
history_pixels = hunyuan.vae_decode(latent, vae).cpu()
else:
overlapped_frames = latent_window_size * 4 - 3
current_pixels = hunyuan.vae_decode(latent, vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
clean_memory_on_device(device)
else:
# bulk decode
logger.info(f"Bulk decoding")
history_pixels = hunyuan.vae_decode(latent, vae).cpu()
vae.to("cpu")
logger.info(f"Decoded. Pixel shape {history_pixels.shape}")
return history_pixels[0] # remove batch dimension
def prepare_i2v_inputs(
args: argparse.Namespace,
device: torch.device,
vae: AutoencoderKLCausal3D,
encoded_context: Optional[Dict] = None,
encoded_context_n: Optional[Dict] = None,
) -> Tuple[int, int, float, dict, dict, dict, torch.Tensor]: # Adjusted return type annotation
"""Prepare inputs for I2V
Args:
args: command line arguments
device: device to use
vae: VAE model, used for image encoding
encoded_context: Pre-encoded text context
encoded_context_n: Pre-encoded negative text context
Returns:
Tuple[int, int, float, dict, dict, dict, torch.Tensor]:
(height, width, video_seconds, context, context_null, context_img, end_latent)
"""
def parse_section_strings(input_string: str) -> dict[int, str]:
section_strings = {}
if not input_string: # Handle empty input string
return {0: ""}
if ";;;" in input_string:
split_section_strings = input_string.split(";;;")
for section_str in split_section_strings:
if ":" not in section_str:
start = end = 0
section_str_val = section_str.strip()
else:
index_str, section_str_val = section_str.split(":", 1)
index_str = index_str.strip()
section_str_val = section_str_val.strip()
m = re.match(r"^(-?\d+)(-\d+)?$", index_str)
if m:
start = int(m.group(1))
end = int(m.group(2)[1:]) if m.group(2) is not None else start
else:
start = end = 0 # Default to 0 if index format is invalid
# Handle negative indices relative to a hypothetical 'last section' (-1)
# This part is tricky without knowing the total sections beforehand.
# For now, treat negative indices directly. A better approach might involve
# resolving them later in the generation loop.
for i in range(start, end + 1):
section_strings[i] = section_str_val
else:
# If no section specifiers, assume section 0
section_strings[0] = input_string.strip()
# Ensure section 0 exists if any sections are defined
if section_strings and 0 not in section_strings:
indices = list(section_strings.keys())
# Prefer smallest non-negative index, otherwise smallest negative index
try:
first_positive_index = min(i for i in indices if i >= 0)
section_index = first_positive_index
except ValueError: # No non-negative indices
section_index = min(indices) if indices else 0 # Fallback to 0 if empty
if section_index in section_strings:
section_strings[0] = section_strings[section_index]
elif section_strings: # If section_index wasn't valid somehow, pick first available
section_strings[0] = next(iter(section_strings.values()))
else: # If section_strings was empty initially
section_strings[0] = "" # Default empty prompt
# If still no section 0 (e.g., empty input string initially)
if 0 not in section_strings:
section_strings[0] = ""
return section_strings
# prepare image preprocessing function
def preprocess_image(image_path: str, target_height: int, target_width: int, is_f1: bool): # is_f1 is kept for signature, but not used differently here
image = Image.open(image_path).convert("RGB")
image_np = np.array(image) # PIL to numpy, HWC
# Consistent image preprocessing for both F1 and standard mode,
# using target_height/target_width which come from args.video_size
image_np = image_video_dataset.resize_image_to_bucket(image_np, (target_width, target_height))
processed_height, processed_width = image_np.shape[0], image_np.shape[1] # Get actual size after resize
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0 # -1 to 1.0, HWC
image_tensor = image_tensor.permute(2, 0, 1)[None, :, None] # HWC -> CHW -> NCFHW, N=1, C=3, F=1
return image_tensor, image_np, processed_height, processed_width
# Initial height/width check. These dimensions will be used for image processing and generation.
height, width, video_seconds = check_inputs(args)
logger.info(f"Video dimensions for processing and generation set to: {height}x{width} (from --video_size or default).")
section_image_paths = parse_section_strings(args.image_path)
section_images = {}
first_image_processed = False
for index, image_path in section_image_paths.items():
img_tensor, img_np, proc_h, proc_w = preprocess_image(image_path, height, width, args.is_f1)
section_images[index] = (img_tensor, img_np)
if not first_image_processed and image_path:
default_video_size_used = (args.video_size[0] == 256 and args.video_size[1] == 256) # Check if default was used
if default_video_size_used and (proc_h != height or proc_w != width):
logger.info(f"Video dimensions updated to {proc_h}x{proc_w} based on first image processing (as default --video_size was used).")
height, width = proc_h, proc_w
args.video_size = [height, width] # Update args for consistency for downstream logging/metadata.
elif not default_video_size_used and (proc_h != height or proc_w != width):
logger.warning(f"User specified --video_size {height}x{width}, but first image processed to {proc_h}x{proc_w}. "
f"Generation will use {height}x{width}. Conditioning image aspect might differ.")
first_image_processed = True
# Process end image if provided
if args.end_image_path is not None:
end_img_tensor, end_img_np, _, _ = preprocess_image(args.end_image_path, height, width, args.is_f1)
else:
end_img_tensor, end_img_np = None, None
# configure negative prompt
n_prompt = args.negative_prompt if args.negative_prompt else ""
if encoded_context is None or encoded_context_n is None: # Regenerate if either is missing
# parse section prompts
section_prompts = parse_section_strings(args.prompt)
# load text encoder
# Assuming load_text_encoder1/2 are compatible
tokenizer1, text_encoder1 = load_text_encoder1(args, args.fp8_llm, device)
tokenizer2, text_encoder2 = load_text_encoder2(args)
text_encoder2.to(device)
logger.info(f"Encoding prompts...")
llama_vecs = {}
llama_attention_masks = {}
clip_l_poolers = {}
# Use a common dtype for text encoders if possible, respecting fp8 flag
text_encoder_dtype = torch.float8_e4m3fn if args.fp8_llm else torch.float16 # text_encoder1.dtype
# Pre-allocate negative prompt tensors only if needed
llama_vec_n, clip_l_pooler_n = None, None
llama_attention_mask_n = None
# Encode positive prompts first
with torch.autocast(device_type=device.type, dtype=text_encoder_dtype), torch.no_grad():
for index, prompt in section_prompts.items():
# Ensure prompt is not empty before encoding
current_prompt = prompt if prompt else "" # Use empty string if prompt is None or empty
llama_vec, clip_l_pooler = hunyuan.encode_prompt_conds(current_prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2)
# Pad/crop and store
llama_vec_padded, llama_attention_mask = crop_or_pad_yield_mask(llama_vec.cpu(), length=512) # Move to CPU before padding
llama_vecs[index] = llama_vec_padded
llama_attention_masks[index] = llama_attention_mask
clip_l_poolers[index] = clip_l_pooler.cpu() # Move to CPU
# Use the encoding of section 0 as fallback for negative if needed
if index == 0 and args.guidance_scale == 1.0:
llama_vec_n = torch.zeros_like(llama_vec_padded)
llama_attention_mask_n = torch.zeros_like(llama_attention_mask)
clip_l_pooler_n = torch.zeros_like(clip_l_poolers[0])
# Encode negative prompt if needed
if args.guidance_scale != 1.0:
with torch.autocast(device_type=device.type, dtype=text_encoder_dtype), torch.no_grad():
current_n_prompt = n_prompt if n_prompt else ""
llama_vec_n_raw, clip_l_pooler_n_raw = hunyuan.encode_prompt_conds(
current_n_prompt, text_encoder1, text_encoder2, tokenizer1, tokenizer2
)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n_raw.cpu(), length=512) # Move to CPU
clip_l_pooler_n = clip_l_pooler_n_raw.cpu() # Move to CPU
# Check if negative prompt was generated (handles guidance_scale=1.0 case)
if llama_vec_n is None:
logger.warning("Negative prompt tensors not generated (likely guidance_scale=1.0). Using zeros.")
# Assuming section 0 exists and was processed
llama_vec_n = torch.zeros_like(llama_vecs[0])
llama_attention_mask_n = torch.zeros_like(llama_attention_masks[0])
clip_l_pooler_n = torch.zeros_like(clip_l_poolers[0])
# free text encoder and clean memory
del text_encoder1, text_encoder2, tokenizer1, tokenizer2
clean_memory_on_device(device)
# load image encoder (Handles SigLIP via framepack_utils)
feature_extractor, image_encoder = load_image_encoders(args)
image_encoder.to(device)
# encode image with image encoder
logger.info(f"Encoding images with {'SigLIP' if args.is_f1 else 'Image Encoder'}...")
section_image_encoder_last_hidden_states = {}
img_encoder_dtype = image_encoder.dtype # Get dtype from loaded model
end_image_embedding_for_f1 = None # Initialize for F1 end image
with torch.autocast(device_type=device.type, dtype=img_encoder_dtype), torch.no_grad():
for index, (img_tensor, img_np) in section_images.items():
# Use hf_clip_vision_encode (works for SigLIP too)
image_encoder_output = hf_clip_vision_encode(img_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state.cpu() # Move to CPU
section_image_encoder_last_hidden_states[index] = image_encoder_last_hidden_state
if args.is_f1 and end_img_np is not None: # end_img_np is from args.end_image_path
logger.info("F1 Mode: Encoding end image for potential conditioning.")
end_image_encoder_output_f1 = hf_clip_vision_encode(end_img_np, feature_extractor, image_encoder)
end_image_embedding_for_f1 = end_image_encoder_output_f1.last_hidden_state.cpu()
# free image encoder and clean memory
del image_encoder, feature_extractor
clean_memory_on_device(device)
# --- Store encoded contexts for potential reuse ---
# Positive context (bundle per unique prompt string if needed, or just section 0)
# For simplicity, let's assume we only cache based on args.prompt for now
encoded_context = {
"llama_vecs": llama_vecs,
"llama_attention_masks": llama_attention_masks,
"clip_l_poolers": clip_l_poolers,
"image_encoder_last_hidden_states": section_image_encoder_last_hidden_states # Store all section states
}
# Negative context
encoded_context_n = {
"llama_vec": llama_vec_n,
"llama_attention_mask": llama_attention_mask_n,
"clip_l_pooler": clip_l_pooler_n,
}
# --- End context caching ---
else:
# Use pre-encoded context
logger.info("Using pre-encoded context.")
llama_vecs = encoded_context["llama_vecs"]
llama_attention_masks = encoded_context["llama_attention_masks"]
clip_l_poolers = encoded_context["clip_l_poolers"]
section_image_encoder_last_hidden_states = encoded_context["image_encoder_last_hidden_states"] # Retrieve all sections
llama_vec_n = encoded_context_n["llama_vec"]
llama_attention_mask_n = encoded_context_n["llama_attention_mask"]
clip_l_pooler_n = encoded_context_n["clip_l_pooler"]
# Need to re-parse section prompts if using cached context
section_prompts = parse_section_strings(args.prompt)
# VAE encoding
logger.info(f"Encoding image(s) to latent space...")
vae.to(device)
vae_dtype = vae.dtype # Get VAE dtype
section_start_latents = {}
with torch.autocast(device_type=device.type, dtype=vae_dtype), torch.no_grad():
for index, (img_tensor, img_np) in section_images.items():
start_latent = hunyuan.vae_encode(img_tensor, vae).cpu() # Move to CPU
section_start_latents[index] = start_latent
end_latent = hunyuan.vae_encode(end_img_tensor, vae).cpu() if end_img_tensor is not None else None # Move to CPU
vae.to("cpu") # move VAE to CPU to save memory
clean_memory_on_device(device)
# prepare model input arguments
arg_c = {} # Positive text conditioning per section
arg_c_img = {} # Positive image conditioning per section
# Ensure section_prompts is available (parsed earlier)
if 'section_prompts' not in locals():
section_prompts = parse_section_strings(args.prompt)
# Populate positive text args
for index in llama_vecs.keys():
# Get corresponding prompt, defaulting to empty string if index missing
prompt_text = section_prompts.get(index, "")
arg_c_i = {
"llama_vec": llama_vecs[index],
"llama_attention_mask": llama_attention_masks[index],
"clip_l_pooler": clip_l_poolers[index],
"prompt": prompt_text, # Include the actual prompt text
}
arg_c[index] = arg_c_i
# Populate negative text args (only one needed)
arg_null = {
"llama_vec": llama_vec_n,
"llama_attention_mask": llama_attention_mask_n,
"clip_l_pooler": clip_l_pooler_n,
"prompt": n_prompt, # Include negative prompt text
}
# Populate positive image args
for index in section_start_latents.keys(): # Use latents keys as reference
# Check if corresponding hidden state exists, fallback to section 0 if needed
image_encoder_last_hidden_state = section_image_encoder_last_hidden_states.get(index, section_image_encoder_last_hidden_states.get(0))
if image_encoder_last_hidden_state is None and section_image_encoder_last_hidden_states:
# Absolute fallback if index and 0 are missing but others exist
image_encoder_last_hidden_state = next(iter(section_image_encoder_last_hidden_states.values()))
elif image_encoder_last_hidden_state is None:
raise ValueError(f"Cannot find image encoder state for section {index} or fallback section 0.")
arg_c_img_i = {
"image_encoder_last_hidden_state": image_encoder_last_hidden_state,
"start_latent": section_start_latents[index]
}
arg_c_img[index] = arg_c_img_i
# Ensure fallback section 0 exists in arg_c and arg_c_img if needed later
if 0 not in arg_c and arg_c:
arg_c[0] = next(iter(arg_c.values()))
if 0 not in arg_c_img and arg_c_img:
arg_c_img[0] = next(iter(arg_c_img.values()))
# Final check for minimal context existence
if not arg_c or not arg_c_img:
raise ValueError("Failed to prepare conditioning arguments. Check prompts and image paths.")
return height, width, video_seconds, arg_c, arg_null, arg_c_img, end_latent, end_image_embedding_for_f1
# def setup_scheduler(args: argparse.Namespace, config, device: torch.device) -> Tuple[Any, torch.Tensor]:
# """setup scheduler for sampling
# Args:
# args: command line arguments
# config: model configuration
# device: device to use
# Returns:
# Tuple[Any, torch.Tensor]: (scheduler, timesteps)
# """
# if args.sample_solver == "unipc":
# scheduler = FlowUniPCMultistepScheduler(num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False)
# scheduler.set_timesteps(args.infer_steps, device=device, shift=args.flow_shift)
# timesteps = scheduler.timesteps
# elif args.sample_solver == "dpm++":
# scheduler = FlowDPMSolverMultistepScheduler(
# num_train_timesteps=config.num_train_timesteps, shift=1, use_dynamic_shifting=False
# )
# sampling_sigmas = get_sampling_sigmas(args.infer_steps, args.flow_shift)
# timesteps, _ = retrieve_timesteps(scheduler, device=device, sigmas=sampling_sigmas)
# elif args.sample_solver == "vanilla":
# scheduler = FlowMatchDiscreteScheduler(num_train_timesteps=config.num_train_timesteps, shift=args.flow_shift)
# scheduler.set_timesteps(args.infer_steps, device=device)
# timesteps = scheduler.timesteps
# # FlowMatchDiscreteScheduler does not support generator argument in step method
# org_step = scheduler.step
# def step_wrapper(
# model_output: torch.Tensor,
# timestep: Union[int, torch.Tensor],
# sample: torch.Tensor,
# return_dict: bool = True,
# generator=None,
# ):
# return org_step(model_output, timestep, sample, return_dict=return_dict)
# scheduler.step = step_wrapper
# else:
# raise NotImplementedError("Unsupported solver.")
# return scheduler, timesteps
# In fpack_generate_video.py
def generate(args: argparse.Namespace, gen_settings: GenerationSettings, shared_models: Optional[Dict] = None) -> Tuple[AutoencoderKLCausal3D, torch.Tensor]: # Return VAE too
"""main function for generation
Args:
args: command line arguments
gen_settings: Generation settings object
shared_models: dictionary containing pre-loaded models and encoded data
Returns:
Tuple[AutoencoderKLCausal3D, torch.Tensor]: vae, generated latent
"""
device, dit_weight_dtype = (gen_settings.device, gen_settings.dit_weight_dtype)
# prepare seed
seed = args.seed if args.seed is not None else random.randint(0, 2**32 - 1)
# Ensure seed is integer
if isinstance(seed, str):
try:
seed = int(seed)
except ValueError:
logger.warning(f"Invalid seed string: {seed}. Generating random seed.")
seed = random.randint(0, 2**32 - 1)
elif not isinstance(seed, int):
logger.warning(f"Invalid seed type: {type(seed)}. Generating random seed.")
seed = random.randint(0, 2**32 - 1)
args.seed = seed # set seed to args for saving
vae = None # Initialize VAE
# Check if we have shared models
if shared_models is not None:
# Use shared models and encoded data
vae = shared_models.get("vae")
model = shared_models.get("model")
# --- Retrieve cached context ---
# Try to get context based on the full prompt string first
prompt_key = args.prompt if args.prompt else ""
n_prompt_key = args.negative_prompt if args.negative_prompt else ""
encoded_context = shared_models.get("encoded_contexts", {}).get(prompt_key)
encoded_context_n = shared_models.get("encoded_contexts", {}).get(n_prompt_key)
# If not found, maybe the cache uses a simpler key (like just section 0?) - needs alignment with prepare_i2v_inputs caching logic
# For now, assume prepare_i2v_inputs handles regeneration if cache miss
if encoded_context is None or encoded_context_n is None:
logger.info("Cached context not found or incomplete, preparing inputs.")
# Need VAE for preparation if regenerating context
if vae is None:
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
height, width, video_seconds, context, context_null, context_img, end_latent = prepare_i2v_inputs(
args, device, vae # Pass VAE here
)
# Store newly generated context back? (Requires shared_models to be mutable and handled carefully)
# shared_models["encoded_contexts"][prompt_key] = context # Simplified example
# shared_models["encoded_contexts"][n_prompt_key] = context_null # Simplified example
else:
logger.info("Using cached context from shared models.")
# Need VAE if decoding later, load if not present
if vae is None:
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
height, width, video_seconds, context, context_null, context_img, end_latent = prepare_i2v_inputs(
args, device, vae, encoded_context, encoded_context_n
)
# --- End context retrieval ---
else:
# prepare inputs without shared models
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
height, width, video_seconds, context, context_null, context_img, end_latent, end_image_embedding_for_f1 = prepare_i2v_inputs(args, device, vae)
# load DiT model
model = load_dit_model(args, device) # Handles F1 class loading implicitly
# merge LoRA weights
if args.lora_weight is not None and len(args.lora_weight) > 0:
# Ensure merge_lora_weights can handle HunyuanVideoTransformer3DModelPacked
# It might need adjustments depending on its implementation.
logger.info("Merging LoRA weights...")
# Assuming lora_framepack is the correct network type definition
# Make sure merge_lora_weights exists and is imported
try:
from base_wan_generate_video import merge_lora_weights # Example import path
merge_lora_weights(lora_framepack, model, args, device)
except ImportError:
logger.error("merge_lora_weights function not found. Skipping LoRA merge.")
except Exception as e:
logger.error(f"Error merging LoRA weights: {e}")
# if we only want to save the model, we can skip the rest
if args.save_merged_model:
# Implement saving logic here if merge_lora_weights doesn't handle it
logger.info(f"Saving merged model to {args.save_merged_model} and exiting.")
# Example: save_model(model, args.save_merged_model)
return None, None # Indicate no generation occurred
# optimize model: fp8 conversion, block swap etc.
optimize_model(model, args, device)
if args.use_teacache:
logger.info(f"Initializing TeaCache: steps={args.teacache_steps}, threshold={args.teacache_thresh}")
# The model's initialize_teacache expects num_steps and rel_l1_thresh
model.initialize_teacache(
enable_teacache=True,
num_steps=args.teacache_steps,
rel_l1_thresh=args.teacache_thresh
)
else:
logger.info("TeaCache is disabled.")
# Ensure it's explicitly disabled in the model too, just in case
model.initialize_teacache(enable_teacache=False)
# --- Sampling ---
latent_window_size = args.latent_window_size # default is 9 (consistent with F1 demo)
if args.video_sections is not None:
total_latent_sections = args.video_sections
logger.info(f"Using --video_sections: {total_latent_sections} sections.")
else:
total_latent_sections = (video_seconds * args.fps) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
logger.info(f"Calculated total_latent_sections from video_seconds: {total_latent_sections} sections.")
# set random generator
seed_g = torch.Generator(device="cpu") # Keep noise on CPU initially
seed_g.manual_seed(seed)
# F1 expects frames = latent_window_size * 4 - 3
# Our script's default decode uses latent_window_size * 4 - 3 overlap
# Let's calculate F1 frames per section explicitly
f1_frames_per_section = latent_window_size * 4 - 3
logger.info(
f"Mode: {'F1' if args.is_f1 else 'Standard'}, "
f"Video size: {height}x{width}@{video_seconds:.2f}s, fps: {args.fps}, num sections: {total_latent_sections}, "
f"infer_steps: {args.infer_steps}, frames per generation step: {f1_frames_per_section}"
)
# Determine compute dtype based on model/args
compute_dtype = model.dtype if hasattr(model, 'dtype') else torch.bfloat16 # Default for F1
if args.fp8 or args.fp8_scaled:
# FP8 might still use bfloat16/float16 for some operations
logger.info("FP8 enabled, using bfloat16 for intermediate computations.")
compute_dtype = torch.bfloat16 # Or potentially float16 depending on model/ops
logger.info(f"Using compute dtype: {compute_dtype}")
# --- F1 Model Specific Sampling Logic ---
if args.is_f1: # Renamed from args.f1 in simpler script to args.is_f1
logger.info("Starting F1 model sampling process.")
logger.info(f"F1 Mode: Using video dimensions {height}x{width} for latent operations and generation.")
history_latents = torch.zeros((1, 16, 19, height // 8, width // 8), dtype=torch.float32, device='cpu')
start_latent_0 = context_img.get(0, {}).get("start_latent")
if start_latent_0 is None:
raise ValueError("Cannot find start_latent for section 0 in context_img.")
if start_latent_0.shape[3] != (height // 8) or start_latent_0.shape[4] != (width // 8):
logger.error(f"Mismatch between start_latent_0 dimensions ({start_latent_0.shape[3]}x{start_latent_0.shape[4]}) "
f"and history_latents dimensions ({height//8}x{width//8}). This should not happen with current logic.")
history_latents = torch.cat([history_latents, start_latent_0.cpu().float()], dim=2)
history_pixels_for_preview_f1_cpu = None
if args.full_preview and args.preview_latent_every is not None:
if vae is None:
logger.error("VAE not available for initial F1 preview setup.")
else:
logger.info("F1 Full Preview: Decoding initial start_latent for preview history.")
vae.to(device)
initial_latent_for_preview = start_latent_0.to(device, dtype=vae.dtype if hasattr(vae, 'dtype') else torch.float16)
# Assuming vae_decode returns BCTHW or CTHW. Ensure BCTHW for history_pixels.
decoded_initial = hunyuan.vae_decode(initial_latent_for_preview, vae).cpu()
if decoded_initial.ndim == 4: # CTHW
history_pixels_for_preview_f1_cpu = decoded_initial.unsqueeze(0)
elif decoded_initial.ndim == 5: # BCTHW
history_pixels_for_preview_f1_cpu = decoded_initial
else:
logger.error(f"Unexpected dimensions from initial VAE decode: {decoded_initial.shape}")
vae.to("cpu")
clean_memory_on_device(device)
total_generated_latent_frames = 1 # Account for the initial start_latent_0 in history_latents
if args.preview_latent_every and not args.full_preview:
previewer = LatentPreviewer(args, vae, None, gen_settings.device, compute_dtype, model_type="framepack")
else:
previewer = None
for section_index in range(total_latent_sections):
logger.info(f"--- F1 Section {section_index + 1} / {total_latent_sections} ---")
f1_split_sizes = [1, 16, 2, 1, args.latent_window_size]
f1_indices = torch.arange(0, sum(f1_split_sizes)).unsqueeze(0).to(device)
(
f1_clean_latent_indices_start,
f1_clean_latent_4x_indices,
f1_clean_latent_2x_indices,
f1_clean_latent_1x_indices,
f1_latent_indices,
) = f1_indices.split(f1_split_sizes, dim=1)
f1_clean_latent_indices = torch.cat([f1_clean_latent_indices_start, f1_clean_latent_1x_indices], dim=1)
current_image_context_section_idx = section_index if section_index in context_img else 0
current_start_latent = context_img[current_image_context_section_idx]["start_latent"].to(device, dtype=torch.float32)
current_history_for_f1_clean = history_latents[:, :, -sum([16, 2, 1]):, :, :].to(device, dtype=torch.float32)
f1_clean_latents_4x, f1_clean_latents_2x, f1_clean_latents_1x = current_history_for_f1_clean.split([16, 2, 1], dim=2)
f1_clean_latents_combined = torch.cat([current_start_latent, f1_clean_latents_1x], dim=2)
context_section_idx = section_index if section_index in context else 0
llama_vec = context[context_section_idx]["llama_vec"].to(device, dtype=compute_dtype)
llama_attention_mask = context[context_section_idx]["llama_attention_mask"].to(device)
clip_l_pooler = context[context_section_idx]["clip_l_pooler"].to(device, dtype=compute_dtype)
image_encoder_last_hidden_state = context_img[current_image_context_section_idx]["image_encoder_last_hidden_state"].to(device, dtype=compute_dtype)
llama_vec_n = context_null["llama_vec"].to(device, dtype=compute_dtype)
llama_attention_mask_n = context_null["llama_attention_mask"].to(device)
clip_l_pooler_n = context_null["clip_l_pooler"].to(device, dtype=compute_dtype)
# generated_latents_step is on GPU after sample_hunyuan
generated_latents_step = sample_hunyuan(
transformer=model, sampler=args.sample_solver, width=width, height=height,
frames=f1_frames_per_section, real_guidance_scale=args.guidance_scale,
distilled_guidance_scale=args.embedded_cfg_scale, guidance_rescale=args.guidance_rescale,
num_inference_steps=args.infer_steps, generator=seed_g,
prompt_embeds=llama_vec, prompt_embeds_mask=llama_attention_mask, prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n, negative_prompt_embeds_mask=llama_attention_mask_n, negative_prompt_poolers=clip_l_pooler_n,
device=device, dtype=compute_dtype, image_embeddings=image_encoder_last_hidden_state,
latent_indices=f1_latent_indices, clean_latents=f1_clean_latents_combined, clean_latent_indices=f1_clean_latent_indices,
clean_latents_2x=f1_clean_latents_2x, clean_latent_2x_indices=f1_clean_latent_2x_indices,
clean_latents_4x=f1_clean_latents_4x, clean_latent_4x_indices=f1_clean_latent_4x_indices,
)
newly_generated_latent_frames_count_this_step = int(generated_latents_step.shape[2])
history_latents = torch.cat([history_latents, generated_latents_step.cpu().float()], dim=2)
total_generated_latent_frames += newly_generated_latent_frames_count_this_step
if args.preview_latent_every is not None and (section_index + 1) % args.preview_latent_every == 0:
if args.full_preview:
logger.info(f"Saving full F1 preview at section {section_index + 1}")
if vae is None:
logger.error("VAE not available for full F1 preview.")
else:
preview_filename_full = os.path.join(args.save_path, f"latent_preview_{args.preview_suffix if args.preview_suffix else section_index + 1}.mp4")
latents_this_step_for_decode = generated_latents_step.to(device, dtype=vae.dtype if hasattr(vae, 'dtype') else torch.float16)
vae.to(device)
pixels_this_step_decoded_cpu = hunyuan.vae_decode(latents_this_step_for_decode, vae).cpu()
vae.to("cpu")
if pixels_this_step_decoded_cpu.ndim == 4:
pixels_this_step_decoded_cpu = pixels_this_step_decoded_cpu.unsqueeze(0)
if history_pixels_for_preview_f1_cpu is None:
history_pixels_for_preview_f1_cpu = pixels_this_step_decoded_cpu
else:
overlap_pixels = args.latent_window_size * 4 - 3
history_pixels_for_preview_f1_cpu = soft_append_bcthw(
history_pixels_for_preview_f1_cpu,
pixels_this_step_decoded_cpu,
overlap=overlap_pixels
)
save_bcthw_as_mp4(history_pixels_for_preview_f1_cpu, preview_filename_full, fps=args.fps, crf=getattr(args, 'mp4_crf', 16))
logger.info(f"Full F1 preview saved to {preview_filename_full}")
del latents_this_step_for_decode, pixels_this_step_decoded_cpu
clean_memory_on_device(device)
elif previewer is not None:
logger.info(f"Previewing latents at F1 section {section_index + 1}")
preview_latents_f1_for_pv = history_latents[:, :, -total_generated_latent_frames:, :, :].to(gen_settings.device)
previewer.preview(preview_latents_f1_for_pv, section_index, preview_suffix=args.preview_suffix)
del preview_latents_f1_for_pv
clean_memory_on_device(gen_settings.device)
del generated_latents_step, current_history_for_f1_clean, f1_clean_latents_combined
del f1_clean_latents_1x, f1_clean_latents_2x, f1_clean_latents_4x, current_start_latent
del llama_vec, llama_attention_mask, clip_l_pooler, image_encoder_last_hidden_state
del llama_vec_n, llama_attention_mask_n, clip_l_pooler_n
clean_memory_on_device(device)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
# No resizing needed as generation happened at target dimensions.
# --- Standard Model Sampling Logic ---
else: # Standard mode
logger.info("Starting standard model sampling process.")
history_latents = torch.zeros((1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32, device='cpu')
if end_latent is not None:
logger.info(f"Using end image: {args.end_image_path}")
history_latents[:, :, 0:1] = end_latent.cpu().float()
total_generated_latent_frames = 0
history_pixels_for_preview_std_cpu = None # Initialize pixel history
# For standard mode (backward generation), the first chunk generated is the "end" of the video.
# If end_latent is provided and previews are on, we should decode it to start the preview history.
if args.full_preview and args.preview_latent_every is not None and end_latent is not None:
if vae is None:
logger.error("VAE not available for initial Standard mode preview setup with end_latent.")
else:
logger.info("Standard Full Preview: Decoding initial end_latent for preview history.")
vae.to(device)
initial_latent_for_preview = end_latent.to(device, dtype=vae.dtype if hasattr(vae, 'dtype') else torch.float16)
decoded_initial = hunyuan.vae_decode(initial_latent_for_preview, vae).cpu()
if decoded_initial.ndim == 4: # CTHW
history_pixels_for_preview_std_cpu = decoded_initial.unsqueeze(0)
elif decoded_initial.ndim == 5: # BCTHW
history_pixels_for_preview_std_cpu = decoded_initial
else:
logger.error(f"Unexpected dimensions from initial VAE decode for end_latent: {decoded_initial.shape}")
vae.to("cpu")
clean_memory_on_device(device)
latent_paddings = list(reversed(range(total_latent_sections)))
if total_latent_sections > 4:
logger.info("Using F1-style latent padding heuristic for > 4 sections.")
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
if args.preview_latent_every and not args.full_preview:
previewer = LatentPreviewer(args, vae, None, gen_settings.device, compute_dtype, model_type="framepack")
else:
previewer = None
for section_index_reverse, latent_padding in enumerate(latent_paddings):
section_index = total_latent_sections - 1 - section_index_reverse
section_index_from_last = -(section_index_reverse + 1)
logger.info(f"--- Standard Section {section_index + 1} / {total_latent_sections} (Reverse Index {section_index_reverse}, Padding {latent_padding}) ---")
is_last_section = latent_padding == 0
latent_padding_size = latent_padding * latent_window_size
apply_section_image = False
if section_index_from_last in context_img:
image_index = section_index_from_last
if not is_last_section: apply_section_image = True
elif section_index in context_img:
image_index = section_index
if not is_last_section: apply_section_image = True
else:
image_index = 0
start_latent_section = context_img[image_index]["start_latent"].to(device, dtype=torch.float32)
if apply_section_image:
latent_padding_size = 0
logger.info(f"Applying experimental section image, forcing latent_padding_size = 0")
split_sizes_std = [1, latent_padding_size, latent_window_size, 1, 2, 16]
indices_std = torch.arange(0, sum(split_sizes_std)).unsqueeze(0).to(device)
(
clean_latent_indices_pre, blank_indices, latent_indices,
clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices,
) = indices_std.split(split_sizes_std, dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
current_history_std = history_latents[:, :, :19].to(device, dtype=torch.float32)
clean_latents_post, clean_latents_2x, clean_latents_4x = current_history_std.split([1, 2, 16], dim=2)
clean_latents = torch.cat([start_latent_section, clean_latents_post], dim=2)
if section_index_from_last in context: prompt_index = section_index_from_last
elif section_index in context: prompt_index = section_index
else: prompt_index = 0
context_for_index = context[prompt_index]
logger.info(f"Using prompt from section {prompt_index}: '{context_for_index['prompt'][:100]}...'")
llama_vec = context_for_index["llama_vec"].to(device, dtype=compute_dtype)
llama_attention_mask = context_for_index["llama_attention_mask"].to(device)
clip_l_pooler = context_for_index["clip_l_pooler"].to(device, dtype=compute_dtype)
image_encoder_last_hidden_state = context_img[image_index]["image_encoder_last_hidden_state"].to(device, dtype=compute_dtype)
llama_vec_n = context_null["llama_vec"].to(device, dtype=compute_dtype)
llama_attention_mask_n = context_null["llama_attention_mask"].to(device)
clip_l_pooler_n = context_null["clip_l_pooler"].to(device, dtype=compute_dtype)
sampler_to_use = args.sample_solver
guidance_scale_to_use = args.guidance_scale
embedded_cfg_scale_to_use = args.embedded_cfg_scale
guidance_rescale_to_use = args.guidance_rescale
# generated_latents_step is on GPU after sample_hunyuan
generated_latents_step_gpu = sample_hunyuan(
transformer=model, sampler=sampler_to_use, width=width, height=height,
frames=f1_frames_per_section, real_guidance_scale=guidance_scale_to_use,
distilled_guidance_scale=embedded_cfg_scale_to_use, guidance_rescale=guidance_rescale_to_use,
num_inference_steps=args.infer_steps, generator=seed_g,
prompt_embeds=llama_vec, prompt_embeds_mask=llama_attention_mask, prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n, negative_prompt_embeds_mask=llama_attention_mask_n, negative_prompt_poolers=clip_l_pooler_n,
device=device, dtype=compute_dtype, image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices, clean_latents=clean_latents, clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x, clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x, clean_latent_4x_indices=clean_latent_4x_indices,
)
# Move to CPU for history accumulation and potential preview decode
generated_latents_step = generated_latents_step_gpu.cpu().float()
if is_last_section: # This is the first iteration in reverse, corresponds to earliest part of generated video
logger.info("Standard Mode: Last section (first in reverse loop), prepending start_latent_section for this chunk.")
generated_latents_step = torch.cat([start_latent_section.cpu().float(), generated_latents_step], dim=2)
current_step_latents_cpu = generated_latents_step.clone() # This is what was generated/prepended in this step
total_generated_latent_frames += int(generated_latents_step.shape[2])
history_latents = torch.cat([generated_latents_step, history_latents], dim=2) # Prepend to full latent history
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
if args.preview_latent_every is not None and (section_index_reverse + 1) % args.preview_latent_every == 0:
if args.full_preview:
logger.info(f"Saving full preview at standard section {section_index + 1} (Reverse Index {section_index_reverse})")
if vae is None:
logger.error("VAE not available for full standard preview.")
else:
preview_filename_full_std = os.path.join(args.save_path, f"latent_preview_{args.preview_suffix if args.preview_suffix else section_index_reverse + 1}.mp4")
latents_this_step_for_decode = current_step_latents_cpu.to(device, dtype=vae.dtype if hasattr(vae, 'dtype') else torch.float16)
vae.to(device)
pixels_this_step_decoded_cpu = hunyuan.vae_decode(latents_this_step_for_decode, vae).cpu()
vae.to("cpu")
if pixels_this_step_decoded_cpu.ndim == 4:
pixels_this_step_decoded_cpu = pixels_this_step_decoded_cpu.unsqueeze(0)
if history_pixels_for_preview_std_cpu is None:
history_pixels_for_preview_std_cpu = pixels_this_step_decoded_cpu
else:
overlap_pixels = args.latent_window_size * 4 - 3
# Standard mode prepends, so new pixels are first arg for soft_append
history_pixels_for_preview_std_cpu = soft_append_bcthw(
pixels_this_step_decoded_cpu,
history_pixels_for_preview_std_cpu,
overlap=overlap_pixels
)
save_bcthw_as_mp4(history_pixels_for_preview_std_cpu, preview_filename_full_std, fps=args.fps, crf=getattr(args, 'mp4_crf', 16))
logger.info(f"Full standard preview saved to {preview_filename_full_std}")
del latents_this_step_for_decode, pixels_this_step_decoded_cpu
clean_memory_on_device(device)
elif previewer is not None:
logger.info(f"Previewing latents at standard section {section_index + 1} (Reverse Index {section_index_reverse})")
preview_latents_std_for_pv = real_history_latents.to(gen_settings.device)
previewer.preview(preview_latents_std_for_pv, section_index, preview_suffix=args.preview_suffix)
del preview_latents_std_for_pv
clean_memory_on_device(gen_settings.device)
logger.info(f"Section {section_index + 1} finished. Total latent frames: {total_generated_latent_frames}. History shape: {history_latents.shape}")
del generated_latents_step, current_history_std, clean_latents, clean_latents_post, clean_latents_2x, clean_latents_4x
del llama_vec, llama_attention_mask, clip_l_pooler, image_encoder_last_hidden_state, start_latent_section
del llama_vec_n, llama_attention_mask_n, clip_l_pooler_n
# Explicitly delete the GPU tensor if it was created
if 'generated_latents_step_gpu' in locals(): del generated_latents_step_gpu
clean_memory_on_device(device)
gc.collect()
clean_memory_on_device(device)
# Return the final generated latents (CPU tensor) and the VAE
# The shape should be (B, C, T_total, H, W)
logger.info(f"Generation complete. Final latent shape: {real_history_latents.shape}")
return vae, real_history_latents # Return VAE along with latents
def save_latent(latent: torch.Tensor, args: argparse.Namespace, height: int, width: int, original_base_name: Optional[str] = None) -> str: # Add original_base_name
"""Save latent to file
Args:
latent: Latent tensor (CTHW expected)
args: command line arguments
height: height of frame
width: width of frame
original_base_name: Optional base name from loaded file
Returns:
str: Path to saved latent file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}" # Use provided base name
video_seconds = args.video_seconds
latent_path = f"{save_path}/{time_flag}_{seed}{original_name}_latent.safetensors" # Add original name to file
# Ensure latent is on CPU before saving
latent = latent.detach().cpu()
if args.no_metadata:
metadata = None
else:
# (Metadata creation remains the same)
metadata = {
"seeds": f"{seed}",
"prompt": f"{args.prompt}",
"height": f"{height}",
"width": f"{width}",
"video_seconds": f"{video_seconds}",
"infer_steps": f"{args.infer_steps}",
"guidance_scale": f"{args.guidance_scale}",
"latent_window_size": f"{args.latent_window_size}",
"embedded_cfg_scale": f"{args.embedded_cfg_scale}",
"guidance_rescale": f"{args.guidance_rescale}",
"sample_solver": f"{args.sample_solver}",
# "latent_window_size": f"{args.latent_window_size}", # Duplicate key
"fps": f"{args.fps}",
"is_f1": f"{args.is_f1}", # Add F1 flag to metadata
}
if args.negative_prompt is not None:
metadata["negative_prompt"] = f"{args.negative_prompt}"
# Add other relevant args like LoRA, compile settings, etc. if desired
sd = {"latent": latent.contiguous()}
save_file(sd, latent_path, metadata=metadata)
logger.info(f"Latent saved to: {latent_path}")
return latent_path
def save_video(
video: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None, latent_frames: Optional[int] = None
) -> str:
"""Save video to file
Args:
video: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved video file
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
latent_frames = "" if latent_frames is None else f"_{latent_frames}"
video_path = f"{save_path}/{time_flag}_{seed}{original_name}{latent_frames}.mp4"
video = video.unsqueeze(0)
if args.codec is not None:
save_videos_grid_advanced(video, video_path, args.codec, args.container, rescale=True, fps=args.fps, keep_frames=args.keep_pngs)
else:
save_videos_grid(video, video_path, fps=args.fps, rescale=True)
logger.info(f"Video saved to: {video_path}")
return video_path
def save_images(sample: torch.Tensor, args: argparse.Namespace, original_base_name: Optional[str] = None) -> str:
"""Save images to directory
Args:
sample: Video tensor
args: command line arguments
original_base_name: Original base name (if latents are loaded from files)
Returns:
str: Path to saved images directory
"""
save_path = args.save_path
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
seed = args.seed
original_name = "" if original_base_name is None else f"_{original_base_name}"
image_name = f"{time_flag}_{seed}{original_name}"
sample = sample.unsqueeze(0)
save_images_grid(sample, save_path, image_name, rescale=True)
logger.info(f"Sample images saved to: {save_path}/{image_name}")
return f"{save_path}/{image_name}"
# In fpack_generate_video.py
def save_output(
args: argparse.Namespace,
vae: AutoencoderKLCausal3D,
latent: torch.Tensor,
device: torch.device,
original_base_names: Optional[List[str]] = None,
) -> None:
"""save output
Args:
args: command line arguments
vae: VAE model
latent: latent tensor (should be BCTHW or CTHW)
device: device to use
original_base_names: original base names (if latents are loaded from files)
"""
if latent.ndim == 4: # Add batch dim if missing (CTHW -> BCTHW)
latent = latent.unsqueeze(0)
elif latent.ndim != 5:
raise ValueError(f"Unexpected latent dimensions: {latent.ndim}. Expected 4 or 5.")
# Latent shape is BCTHW
batch_size, channels, latent_frames, latent_height, latent_width = latent.shape
height = latent_height * 8
width = latent_width * 8
logger.info(f"Saving output. Latent shape: {latent.shape}; Target pixel shape: {height}x{width}")
if args.output_type == "latent" or args.output_type == "both":
# save latent (use first name if multiple originals)
base_name = original_base_names[0] if original_base_names else None
save_latent(latent[0], args, height, width, original_base_name=base_name) # Save first batch item if B > 1
if args.output_type == "latent":
return
if args.video_sections is not None:
total_latent_sections = args.video_sections
else:
total_latent_sections = (args.video_seconds * args.fps) / (args.latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
logger.info(f"Decoding using total_latent_sections = {total_latent_sections} (derived from {'--video_sections' if args.video_sections is not None else '--video_seconds'}).")
# Decode (handle potential batch > 1?)
# decode_latent expects BCTHW or CTHW, and returns CTHW
# Currently process only the first item in the batch for saving video/images
video = decode_latent(args.latent_window_size, total_latent_sections, args.bulk_decode, vae, latent[0], device)
if args.output_type == "video" or args.output_type == "both":
# save video
original_name = original_base_names[0] if original_base_names else None
save_video(video, args, original_name, latent_frames=latent_frames) # Pass latent frames count
elif args.output_type == "images":
# save images
original_name = original_base_names[0] if original_base_names else None
save_images(video, args, original_name)
def preprocess_prompts_for_batch(prompt_lines: List[str], base_args: argparse.Namespace) -> List[Dict]:
"""Process multiple prompts for batch mode
Args:
prompt_lines: List of prompt lines
base_args: Base command line arguments
Returns:
List[Dict]: List of prompt data dictionaries
"""
prompts_data = []
for line in prompt_lines:
line = line.strip()
if not line or line.startswith("#"): # Skip empty lines and comments
continue
# Parse prompt line and create override dictionary
prompt_data = parse_prompt_line(line)
logger.info(f"Parsed prompt data: {prompt_data}")
prompts_data.append(prompt_data)
return prompts_data
def get_generation_settings(args: argparse.Namespace) -> GenerationSettings:
device = torch.device(args.device)
dit_weight_dtype = None # default
if args.fp8_scaled:
dit_weight_dtype = None # various precision weights, so don't cast to specific dtype
elif args.fp8:
dit_weight_dtype = torch.float8_e4m3fn
logger.info(f"Using device: {device}, DiT weight weight precision: {dit_weight_dtype}")
gen_settings = GenerationSettings(device=device, dit_weight_dtype=dit_weight_dtype)
return gen_settings
# In fpack_generate_video.py
def main():
# Parse arguments
args = parse_args()
# Check if latents are provided
latents_mode = args.latent_path is not None and len(args.latent_path) > 0
# Set device
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
logger.info(f"Using device: {device}")
args.device = device # Ensure args has the final device
if latents_mode:
# --- Latent Decode Mode ---
# (Keep existing logic, but maybe add F1 flag reading from metadata?)
original_base_names = []
latents_list = []
seeds = []
is_f1_from_metadata = False # Default
# Allow only one latent file for simplicity now
if len(args.latent_path) > 1:
logger.warning("Loading multiple latents is not fully supported for metadata consistency. Using first latent's metadata.")
for i, latent_path in enumerate(args.latent_path):
logger.info(f"Loading latent from: {latent_path}")
base_name = os.path.splitext(os.path.basename(latent_path))[0]
original_base_names.append(base_name)
seed = 0 # Default seed
if not latent_path.lower().endswith(".safetensors"):
logger.warning(f"Loading from non-safetensors file {latent_path}. Metadata might be missing.")
latents = torch.load(latent_path, map_location="cpu")
if isinstance(latents, dict) and "latent" in latents: # Handle potential dict structure
latents = latents["latent"]
else:
try:
# Load latent tensor
loaded_data = load_file(latent_path, device="cpu") # Load to CPU
latents = loaded_data["latent"]
# Load metadata
metadata = {}
with safe_open(latent_path, framework="pt", device="cpu") as f:
metadata = f.metadata()
if metadata is None:
metadata = {}
logger.info(f"Loaded metadata: {metadata}")
# Apply metadata only from the first file for consistency
if i == 0:
if "seeds" in metadata:
try:
seed = int(metadata["seeds"])
except ValueError:
logger.warning(f"Could not parse seed from metadata: {metadata['seeds']}")
if "height" in metadata and "width" in metadata:
try:
height = int(metadata["height"])
width = int(metadata["width"])
args.video_size = [height, width]
logger.info(f"Set video size from metadata: {height}x{width}")
except ValueError:
logger.warning(f"Could not parse height/width from metadata.")
if "video_seconds" in metadata:
try:
args.video_seconds = float(metadata["video_seconds"])
logger.info(f"Set video seconds from metadata: {args.video_seconds}")
except ValueError:
logger.warning(f"Could not parse video_seconds from metadata.")
if "fps" in metadata:
try:
args.fps = int(metadata["fps"])
logger.info(f"Set fps from metadata: {args.fps}")
except ValueError:
logger.warning(f"Could not parse fps from metadata.")
if "is_f1" in metadata:
is_f1_from_metadata = metadata["is_f1"].lower() == 'true'
if args.is_f1 != is_f1_from_metadata:
logger.warning(f"Metadata indicates is_f1={is_f1_from_metadata}, overriding command line argument --is_f1={args.is_f1}")
args.is_f1 = is_f1_from_metadata
except Exception as e:
logger.error(f"Error loading safetensors file {latent_path}: {e}")
continue # Skip this file
# Use seed from first file for all if multiple latents are somehow processed
if i == 0:
args.seed = seed
seeds.append(seed) # Store all seeds read
logger.info(f"Loaded latent shape: {latents.shape}")
if latents.ndim == 5: # [BCTHW]
if latents.shape[0] > 1:
logger.warning("Latent file contains batch size > 1. Using only the first item.")
latents = latents[0] # Use first item -> [CTHW]
elif latents.ndim != 4:
logger.error(f"Unexpected latent dimension {latents.ndim} in {latent_path}. Skipping.")
continue
latents_list.append(latents)
if not latents_list:
logger.error("No valid latents loaded. Exiting.")
return
# Stack latents into a batch if multiple were loaded (BCTHW)
# Note: Saving output currently only processes the first batch item.
latent_batch = torch.stack(latents_list, dim=0)
# Load VAE needed for decoding
vae = load_vae(args.vae, args.vae_chunk_size, args.vae_spatial_tile_sample_min_size, device)
# Call save_output with the batch
save_output(args, vae, latent_batch, device, original_base_names)
elif args.from_file:
# Batch mode from file (Not Implemented)
logger.error("Batch mode (--from_file) is not implemented yet.")
# with open(args.from_file, "r", encoding="utf-8") as f:
# prompt_lines = f.readlines()
# prompts_data = preprocess_prompts_for_batch(prompt_lines, args)
# process_batch_prompts(prompts_data, args) # Needs implementation
raise NotImplementedError("Batch mode is not implemented yet.")
elif args.interactive:
# Interactive mode (Not Implemented)
logger.error("Interactive mode (--interactive) is not implemented yet.")
# process_interactive(args) # Needs implementation
raise NotImplementedError("Interactive mode is not implemented yet.")
else:
# --- Single prompt mode (original behavior + F1 support) ---
gen_settings = get_generation_settings(args)
# Generate returns (vae, latent)
vae, latent = generate(args, gen_settings) # VAE might be loaded inside generate
if latent is None: # Handle cases like --save_merged_model
logger.info("Generation did not produce latents (e.g., --save_merged_model used). Exiting.")
return
# Ensure VAE is available (it should be returned by generate)
if vae is None:
logger.error("VAE not available after generation. Cannot save output.")
return
# Save output expects BCTHW or CTHW, generate returns BCTHW
# save_output handles the batch dimension internally now.
save_output(args, vae, latent, device)
# Clean up VAE if it was loaded here
del vae
gc.collect()
clean_memory_on_device(device)
logger.info("Done!")
if __name__ == "__main__":
main()
|