Spaces:
Running
Running
File size: 27,578 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
from diffusers_helper.hf_login import login
import os
import random
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import argparse
import math
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true')
parser.add_argument("--server", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default=8001)
args = parser.parse_args()
print(args)
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
if not high_vram:
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
@torch.no_grad()
def worker(input_image, end_frame, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, save_section_frames, section_settings=None):
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# セクション設定の前処理
def get_section_settings_map(section_settings):
"""
section_settings: DataFrame List of formats [[number, image, prompt], ...] → {section number: (image, prompt)}dict
"""
result = {}
if section_settings is not None:
for row in section_settings:
if row and row[0] is not None:
sec_num = int(row[0])
img = row[1]
prm = row[2] if len(row) > 2 else ""
result[sec_num] = (img, prm)
return result
section_map = get_section_settings_map(section_settings)
section_numbers_sorted = sorted(section_map.keys()) if section_map else []
def get_section_info(i_section):
"""
i_section: int
section_map: {Section number: (Image, prompt)}
If there is no specification, the next section, if not None
"""
if not section_map:
return None, None, None
# i_section以降で最初に見つかる設定
for sec in range(i_section, max(section_numbers_sorted)+1):
if sec in section_map:
img, prm = section_map[sec]
return sec, img, prm
return None, None, None
# Clean GPU
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Processing input image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
def preprocess_image(img):
H, W, C = img.shape
height, width = find_nearest_bucket(H, W, resolution=640)
img_np = resize_and_center_crop(img, target_width=width, target_height=height)
img_pt = torch.from_numpy(img_np).float() / 127.5 - 1
img_pt = img_pt.permute(2, 0, 1)[None, :, None]
return img_np, img_pt, height, width
input_image_np, input_image_pt, height, width = preprocess_image(input_image)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
# VAE encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# end_frameも同じタイミングでencode
if end_frame is not None:
end_frame_np, end_frame_pt, _, _ = preprocess_image(end_frame)
end_frame_latent = vae_encode(end_frame_pt, vae)
else:
end_frame_latent = None
# create section_latents here
section_latents = None
if section_map:
section_latents = {}
for sec_num, (img, prm) in section_map.items():
if img is not None:
# 画像をVAE encode
img_np, img_pt, _, _ = preprocess_image(img)
section_latents[sec_num] = vae_encode(img_pt, vae)
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
# Sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
num_frames = latent_window_size * 4 - 3
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
history_pixels = None
total_generated_latent_frames = 0
latent_paddings = reversed(range(total_latent_sections))
if total_latent_sections > 4:
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
# items looks better than expanding it when total_latent_sections > 4
# One can try to remove below trick and just
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
for i_section, latent_padding in enumerate(latent_paddings):
is_first_section = i_section == 0
is_last_section = latent_padding == 0
use_end_latent = is_last_section and end_frame is not None
latent_padding_size = latent_padding * latent_window_size
# set current_latent here
# セクションごとのlatentを使う場合
if section_map and section_latents is not None and len(section_latents) > 0:
# i_section以上で最小のsection_latentsキーを探す
valid_keys = [k for k in section_latents.keys() if k >= i_section]
if valid_keys:
use_key = min(valid_keys)
current_latent = section_latents[use_key]
print(f"[section_latent] section {i_section}: use section {use_key} latent (section_map keys: {list(section_latents.keys())})")
print(f"[section_latent] current_latent id: {id(current_latent)}, min: {current_latent.min().item():.4f}, max: {current_latent.max().item():.4f}, mean: {current_latent.mean().item():.4f}")
else:
current_latent = start_latent
print(f"[section_latent] section {i_section}: use start_latent (no section_latent >= {i_section})")
print(f"[section_latent] current_latent id: {id(current_latent)}, min: {current_latent.min().item():.4f}, max: {current_latent.max().item():.4f}, mean: {current_latent.mean().item():.4f}")
else:
current_latent = start_latent
print(f"[section_latent] section {i_section}: use start_latent (no section_latents)")
print(f"[section_latent] current_latent id: {id(current_latent)}, min: {current_latent.min().item():.4f}, max: {current_latent.max().item():.4f}, mean: {current_latent.mean().item():.4f}")
if is_first_section and end_frame_latent is not None:
history_latents[:, :, 0:1, :, :] = end_frame_latent
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
clean_latents_pre = current_latent.to(history_latents)
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=num_frames,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
# shift=3.0,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
if is_last_section:
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
# Save the final frame of each section as a still image (with section numbers).
if save_section_frames and history_pixels is not None:
try:
if i_section == 0 or current_pixels is None:
# The first section is history_pixels the end of
last_frame = history_pixels[0, :, -1, :, :]
else:
# From the second section onward, current_pixels the end of
last_frame = current_pixels[0, :, -1, :, :]
last_frame = einops.rearrange(last_frame, 'c h w -> h w c')
last_frame = last_frame.cpu().numpy()
last_frame = np.clip((last_frame * 127.5 + 127.5), 0, 255).astype(np.uint8)
last_frame = resize_and_center_crop(last_frame, target_width=width, target_height=height)
if is_first_section and end_frame is None:
Image.fromarray(last_frame).save(os.path.join(outputs_folder, f'{job_id}_{i_section}_end.png'))
else:
Image.fromarray(last_frame).save(os.path.join(outputs_folder, f'{job_id}_{i_section}.png'))
except Exception as e:
print(f"[WARN] セクション{ i_section }最終フレーム画像保存時にエラー: {e}")
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
if is_last_section:
break
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
stream.output_queue.push(('end', None))
return
def process(input_image, end_frame, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, use_random_seed, save_section_frames, section_settings):
global stream
assert input_image is not None, 'No input image!'
if use_random_seed:
seed = random.randint(0, 2**32 - 1)
# Update the seed field of the UI with random values.
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True), gr.update(value=seed)
else:
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True), gr.update()
stream = AsyncStream()
async_run(worker, input_image, end_frame, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, save_section_frames, section_settings)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True), gr.update()
if flag == 'progress':
preview, desc, html = data
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True), gr.update()
if flag == 'end':
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False), gr.update()
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.',
]
quick_prompts = [[x] for x in quick_prompts]
css = make_progress_bar_css()
block = gr.Blocks(css=css).queue()
with block:
gr.Markdown('# FramePack')
with gr.Row():
with gr.Column():
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
end_frame = gr.Image(sources='upload', type="numpy", label="Final Frame (Optional)", height=320)
prompt = gr.Textbox(label="Prompt", value='', lines=8)
with gr.Row():
start_button = gr.Button(value="Start Generation")
end_button = gr.Button(value="End Generation", interactive=False)
with gr.Row():
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
with gr.Group():
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
# Use Random Initial value of the seed
use_random_seed_default = True
seed_default = random.randint(0, 2**32 - 1) if use_random_seed_default else 31337
use_random_seed = gr.Checkbox(label="Use Random Seed", value=use_random_seed_default)
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
seed = gr.Number(label="Seed", value=seed_default, precision=0)
def set_random_seed(is_checked):
if is_checked:
return random.randint(0, 2**32 - 1)
else:
return gr.update()
use_random_seed.change(fn=set_random_seed, inputs=use_random_seed, outputs=seed)
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=1)
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
# Added a checkbox to save still images for each section (default ON)
save_section_frames = gr.Checkbox(label="Save still images for each section", value=True, info="Save the final frame of each section as a still image (default ON)")
# Section settings (Change from DataFrame to individual input fields)
section_number_inputs = []
section_image_inputs = []
section_prompt_inputs = [] # Keep it as an empty list.
with gr.Group():
gr.Markdown("### Section Settings. The section number counts from the end of the video. (Optional. If not specified, the usual Image/prompt will be used.)")
for i in range(3):
with gr.Row():
section_number = gr.Number(label=f"Section number{i+1}", value=None, precision=0)
section_image = gr.Image(label=f"Keyframe image{i+1}", sources="upload", type="numpy", height=200)
section_number_inputs.append(section_number)
section_image_inputs.append(section_image)
# section_settings compiles the values of the three input fields into a list.
def collect_section_settings(*args):
# args: [num1, img1, num2, img2, ...]
return [[args[i], args[i+1], ""] for i in range(0, len(args), 2)]
section_settings = gr.State([[None, None, ""] for _ in range(3)])
section_inputs = []
for i in range(3):
section_inputs.extend([section_number_inputs[i], section_image_inputs[i]])
# Store the summed section_inputs in the section_settings State.
def update_section_settings(*args):
return collect_section_settings(*args)
# Update the section_settings state when section_inputs changes.
for inp in section_inputs:
inp.change(fn=update_section_settings, inputs=section_inputs, outputs=section_settings)
with gr.Column():
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
ips = [input_image, end_frame, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, use_random_seed, save_section_frames, section_settings]
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button, seed])
end_button.click(fn=end_process)
block.launch(
server_name=args.server,
server_port=args.port,
share=args.share,
) |