File size: 7,185 Bytes
e0336bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import os
from typing import Optional, Union

import numpy as np
import torch
from tqdm import tqdm

from dataset import config_utils
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
import accelerate

from dataset.image_video_dataset import ItemInfo, save_text_encoder_output_cache
from hunyuan_model import text_encoder as text_encoder_module
from hunyuan_model.text_encoder import TextEncoder

import logging

from utils.model_utils import str_to_dtype

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)


def encode_prompt(text_encoder: TextEncoder, prompt: Union[str, list[str]]):
    data_type = "video"  # video only, image is not supported
    text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)

    with torch.no_grad():
        prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)

    return prompt_outputs.hidden_state, prompt_outputs.attention_mask


def encode_and_save_batch(
    text_encoder: TextEncoder, batch: list[ItemInfo], is_llm: bool, accelerator: Optional[accelerate.Accelerator]
):
    prompts = [item.caption for item in batch]
    # print(prompts)

    # encode prompt
    if accelerator is not None:
        with accelerator.autocast():
            prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
    else:
        prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)

    # # convert to fp16 if needed
    # if prompt_embeds.dtype == torch.float32 and text_encoder.dtype != torch.float32:
    #     prompt_embeds = prompt_embeds.to(text_encoder.dtype)

    # save prompt cache
    for item, embed, mask in zip(batch, prompt_embeds, prompt_mask):
        save_text_encoder_output_cache(item, embed, mask, is_llm)


def main(args):
    device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)

    # Load dataset config
    blueprint_generator = BlueprintGenerator(ConfigSanitizer())
    logger.info(f"Load dataset config from {args.dataset_config}")
    user_config = config_utils.load_user_config(args.dataset_config)
    blueprint = blueprint_generator.generate(user_config, args)
    train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)

    datasets = train_dataset_group.datasets

    # define accelerator for fp8 inference
    accelerator = None
    if args.fp8_llm:
        accelerator = accelerate.Accelerator(mixed_precision="fp16")

    # define encode function
    num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)

    all_cache_files_for_dataset = []  # exisiting cache files
    all_cache_paths_for_dataset = []  # all cache paths in the dataset
    for dataset in datasets:
        all_cache_files = [os.path.normpath(file) for file in dataset.get_all_text_encoder_output_cache_files()]
        all_cache_files = set(all_cache_files)
        all_cache_files_for_dataset.append(all_cache_files)

        all_cache_paths_for_dataset.append(set())

    def encode_for_text_encoder(text_encoder: TextEncoder, is_llm: bool):
        for i, dataset in enumerate(datasets):
            logger.info(f"Encoding dataset [{i}]")
            all_cache_files = all_cache_files_for_dataset[i]
            all_cache_paths = all_cache_paths_for_dataset[i]
            for batch in tqdm(dataset.retrieve_text_encoder_output_cache_batches(num_workers)):
                # update cache files (it's ok if we update it multiple times)
                all_cache_paths.update([os.path.normpath(item.text_encoder_output_cache_path) for item in batch])

                # skip existing cache files
                if args.skip_existing:
                    filtered_batch = [
                        item for item in batch if not os.path.normpath(item.text_encoder_output_cache_path) in all_cache_files
                    ]
                    # print(f"Filtered {len(batch) - len(filtered_batch)} existing cache files")
                    if len(filtered_batch) == 0:
                        continue
                    batch = filtered_batch

                bs = args.batch_size if args.batch_size is not None else len(batch)
                for i in range(0, len(batch), bs):
                    encode_and_save_batch(text_encoder, batch[i : i + bs], is_llm, accelerator)

    # Load Text Encoder 1
    text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else str_to_dtype(args.text_encoder_dtype)
    logger.info(f"loading text encoder 1: {args.text_encoder1}")
    text_encoder_1 = text_encoder_module.load_text_encoder_1(args.text_encoder1, device, args.fp8_llm, text_encoder_dtype)
    text_encoder_1.to(device=device)

    # Encode with Text Encoder 1
    logger.info("Encoding with Text Encoder 1")
    encode_for_text_encoder(text_encoder_1, is_llm=True)
    del text_encoder_1

    # Load Text Encoder 2
    logger.info(f"loading text encoder 2: {args.text_encoder2}")
    text_encoder_2 = text_encoder_module.load_text_encoder_2(args.text_encoder2, device, text_encoder_dtype)
    text_encoder_2.to(device=device)

    # Encode with Text Encoder 2
    logger.info("Encoding with Text Encoder 2")
    encode_for_text_encoder(text_encoder_2, is_llm=False)
    del text_encoder_2

    # remove cache files not in dataset
    for i, dataset in enumerate(datasets):
        all_cache_files = all_cache_files_for_dataset[i]
        all_cache_paths = all_cache_paths_for_dataset[i]
        for cache_file in all_cache_files:
            if cache_file not in all_cache_paths:
                if args.keep_cache:
                    logger.info(f"Keep cache file not in the dataset: {cache_file}")
                else:
                    os.remove(cache_file)
                    logger.info(f"Removed old cache file: {cache_file}")


def setup_parser():
    parser = argparse.ArgumentParser()

    parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
    parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
    parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
    parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
    parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
    parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
    parser.add_argument(
        "--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
    )
    parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
    parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
    parser.add_argument("--keep_cache", action="store_true", help="keep cache files not in dataset")
    return parser


if __name__ == "__main__":
    parser = setup_parser()

    args = parser.parse_args()
    main(args)