Spaces:
Running
Running
File size: 10,920 Bytes
e0336bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Utility functions for Blissful Tuner extension
License: Apache 2.0
Created on Sat Apr 12 14:09:37 2025
@author: blyss
"""
import argparse
import hashlib
import torch
import safetensors
from typing import List, Union, Dict, Tuple, Optional
import logging
from rich.logging import RichHandler
# Adapted from ComfyUI
def load_torch_file(
ckpt: str,
safe_load: Optional[bool] = True,
device: Optional[Union[str, torch.device]] = None,
return_metadata: Optional[bool] = False
) -> Union[
Dict[str, torch.Tensor],
Tuple[Dict[str, torch.Tensor], Optional[Dict[str, str]]]
]:
if device is None:
device = torch.device("cpu")
metadata = None
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
try:
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
sd[k] = f.get_tensor(k)
if return_metadata:
metadata = f.metadata()
except Exception as e:
if len(e.args) > 0:
message = e.args[0]
if "HeaderTooLarge" in message:
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is corrupt or invalid. Make sure this is actually a safetensors file and not a ckpt or pt or other filetype.".format(message, ckpt))
if "MetadataIncompleteBuffer" in message:
raise ValueError("{}\n\nFile path: {}\n\nThe safetensors file is corrupt/incomplete. Check the file size and make sure you have copied/downloaded it correctly.".format(message, ckpt))
raise e
else:
pl_sd = torch.load(ckpt, map_location=device, weights_only=safe_load)
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
if len(pl_sd) == 1:
key = list(pl_sd.keys())[0]
sd = pl_sd[key]
if not isinstance(sd, dict):
sd = pl_sd
else:
sd = pl_sd
return (sd, metadata) if return_metadata else sd
def add_noise_to_reference_video(
image: torch.Tensor,
ratio: Optional[float] = None
) -> torch.Tensor:
"""
Add Gaussian noise (scaled by `ratio`) to an image or batch of images.
Supports:
• Single image: (C, H, W)
• Batch of images: (B, C, H, W)
Any pixel exactly == –1 will have zero noise (mask value).
"""
if ratio is None or ratio == 0.0:
return image
dims = image.ndim
if dims == 3:
# Single image -> make it a batch of 1
image = image.unsqueeze(0) # -> (1, C, H, W)
squeeze_back = True
elif dims == 4:
squeeze_back = False
else:
raise ValueError(
f"add_noise_to_reference_video() expected 3D or 4D tensor, got {dims}D"
)
# image is now (B, C, H, W)
B, C, H, W = image.shape
# make a (B,) sigma array, all = ratio
sigma = image.new_ones((B,)) * ratio
# sample noise and scale by sigma
noise = torch.randn_like(image) * sigma.view(B, 1, 1, 1)
# zero out noise wherever the original was -1
noise = torch.where(image == -1, torch.zeros_like(image), noise)
out = image + noise
return out.squeeze(0) if squeeze_back else out
# Below here, Blyss wrote it!
class BlissfulLogger:
def __init__(self, logging_source: str, log_color: str, do_announce: Optional[bool] = False):
logging_source = f"{logging_source}"
self.logging_source = "{:<8}".format(logging_source)
self.log_color = log_color
self.logger = logging.getLogger(self.logging_source)
self.logger.setLevel(logging.DEBUG)
self.handler = RichHandler(
show_time=False,
show_level=True,
show_path=True,
rich_tracebacks=True,
markup=True
)
formatter = logging.Formatter(
f"[{self.log_color} bold]%(name)s[/] | %(message)s [dim](%(funcName)s)[/]"
)
self.handler.setFormatter(formatter)
self.logger.addHandler(self.handler)
if do_announce:
self.logger.info("Set up logging!")
def set_color(self, new_color):
self.log_color = new_color
formatter = logging.Formatter(
f"[{self.log_color} bold]%(name)s[/] | %(message)s [dim](%(funcName)s)[/]"
)
self.handler.setFormatter(formatter)
def set_name(self, new_name):
self.logging_source = "{:<8}".format(new_name)
self.logger = logging.getLogger(self.logging_source)
self.logger.setLevel(logging.DEBUG)
# Remove any existing handlers (just in case)
if not self.logger.hasHandlers():
self.logger.addHandler(self.handler)
else:
self.logger.handlers.clear()
self.logger.addHandler(self.handler)
def info(self, msg):
self.logger.info(msg, stacklevel=2)
def debug(self, msg):
self.logger.debug(msg, stacklevel=2)
def warning(self, msg, levelmod=0):
self.logger.warning(msg, stacklevel=2 + levelmod)
def warn(self, msg):
self.logger.warning(msg, stacklevel=2)
def error(self, msg):
self.logger.error(msg, stacklevel=2)
def critical(self, msg):
self.logger.critical(msg, stacklevel=2)
def setLevel(self, level):
self.logger.set_level(level)
def parse_scheduled_cfg(schedule: str, infer_steps: int, guidance_scale: int) -> List[int]:
"""
Parse a schedule string like "1-10,20,!5,e~3" into a sorted list of steps.
- "start-end" includes all steps in [start, end]
- "e~n" includes every nth step (n, 2n, ...) up to infer_steps
- "x" includes the single step x
- Prefix "!" on any token to exclude those steps instead of including them.
- Postfix ":float" e.g. ":6.0" to any step or range to specify a guidance_scale override for that step
Raises argparse.ArgumentTypeError on malformed tokens or out-of-range steps.
"""
excluded = set()
guidance_scale_dict = {}
for raw in schedule.split(","):
token = raw.strip()
if not token:
continue # skip empty tokens
# exclusion if it starts with "!"
if token.startswith("!"):
target = "exclude"
token = token[1:]
else:
target = "include"
weight = guidance_scale
if ":" in token:
token, float_part = token.rsplit(":", 1)
weight = float(float_part)
# modulus syntax: e.g. "e~3"
if token.startswith("e~"):
num_str = token[2:]
try:
n = int(num_str)
except ValueError:
raise argparse.ArgumentTypeError(f"Invalid modulus in '{raw}'")
if n < 1:
raise argparse.ArgumentTypeError(f"Modulus must be ≥ 1 in '{raw}'")
steps = range(n, infer_steps + 1, n)
# range syntax: e.g. "5-10"
elif "-" in token:
parts = token.split("-")
if len(parts) != 2:
raise argparse.ArgumentTypeError(f"Malformed range '{raw}'")
start_str, end_str = parts
try:
start = int(start_str)
end = int(end_str)
except ValueError:
raise argparse.ArgumentTypeError(f"Non‑integer in range '{raw}'")
if start < 1 or end < 1:
raise argparse.ArgumentTypeError(f"Steps must be ≥ 1 in '{raw}'")
if start > end:
raise argparse.ArgumentTypeError(f"Start > end in '{raw}'")
if end > infer_steps:
raise argparse.ArgumentTypeError(f"End > infer_steps ({infer_steps}) in '{raw}'")
steps = range(start, end + 1)
# single‑step syntax: e.g. "7"
else:
try:
step = int(token)
except ValueError:
raise argparse.ArgumentTypeError(f"Invalid token '{raw}'")
if step < 1 or step > infer_steps:
raise argparse.ArgumentTypeError(f"Step {step} out of range 1–{infer_steps} in '{raw}'")
steps = [step]
# apply include/exclude
if target == "include":
for step in steps:
guidance_scale_dict[step] = weight
else:
excluded.update(steps)
for step in excluded:
guidance_scale_dict.pop(step, None)
return guidance_scale_dict
def setup_compute_context(device: Optional[Union[torch.device, str]] = None, dtype: Optional[Union[torch.dtype, str]] = None) -> Tuple[torch.device, torch.dtype]:
dtype_mapping = {
"fp16": torch.float16,
"float16": torch.float16,
"bf16": torch.bfloat16,
"bfloat16": torch.bfloat16,
"fp32": torch.float32,
"float32": torch.float32,
"fp8": torch.float8_e4m3fn,
"float8": torch.float8_e4m3fn
}
if device is None:
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.mps.is_available():
device = torch.device("mps")
elif isinstance(device, str):
device = torch.device(device)
if dtype is None:
dtype = torch.float32
elif isinstance(dtype, str):
if dtype not in dtype_mapping:
raise ValueError(f"Unknown dtype string '{dtype}'")
dtype = dtype_mapping[dtype]
torch.set_float32_matmul_precision('high')
if dtype == torch.float16 or dtype == torch.bfloat16:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = True
print("FP16 accumulation enabled.")
return device, dtype
def string_to_seed(s: str, bits: int = 63) -> int:
"""
Turn any string into a reproducible integer in [0, 2**bits) with a hash and some other logic.
Args:
s: Input string
bits: Number of bits for the final seed (PyTorch accepts up to 63 safely, numpy likes 32)
Returns:
A non-negative int < 2**bits
"""
digest = hashlib.sha256(s.encode("utf-8")).digest()
crypto = int.from_bytes(digest, byteorder="big")
mask = (1 << bits) - 1
algo = 0
for i, char in enumerate(s):
char_val = ord(char)
if i % 2 == 0:
algo *= char_val
elif i % 3 == 0:
algo -= char_val
elif i % 5 == 0:
algo /= char_val
else:
algo += char_val
seed = (abs(crypto - int(algo))) & mask
return seed
def error_out(error, message):
logger = BlissfulLogger(__name__, "#8e00ed")
logger.warning(message, levelmod=1)
raise error(message)
|