File size: 10,436 Bytes
e0336bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python3
"""
Tiny AutoEncoder for Hunyuan Video
(DNN for encoding / decoding videos to Hunyuan Video's latent space)
 From: https://github.com/madebyollin/taehv
 MIT License
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm.auto import tqdm
from collections import namedtuple

DecoderResult = namedtuple("DecoderResult", ("frame", "memory"))
TWorkItem = namedtuple("TWorkItem", ("input_tensor", "block_index"))

def conv(n_in, n_out, **kwargs):
    return nn.Conv2d(n_in, n_out, 3, padding=1, **kwargs)

class Clamp(nn.Module):
    def forward(self, x):
        return torch.tanh(x / 3) * 3

class MemBlock(nn.Module):
    def __init__(self, n_in, n_out):
        super().__init__()
        self.conv = nn.Sequential(conv(n_in * 2, n_out), nn.ReLU(inplace=True), conv(n_out, n_out), nn.ReLU(inplace=True), conv(n_out, n_out))
        self.skip = nn.Conv2d(n_in, n_out, 1, bias=False) if n_in != n_out else nn.Identity()
        self.act = nn.ReLU(inplace=True)
    def forward(self, x, past):
        return self.act(self.conv(torch.cat([x, past], 1)) + self.skip(x))

class TPool(nn.Module):
    def __init__(self, n_f, stride):
        super().__init__()
        self.stride = stride
        self.conv = nn.Conv2d(n_f*stride,n_f, 1, bias=False)
    def forward(self, x):
        _NT, C, H, W = x.shape
        return self.conv(x.reshape(-1, self.stride * C, H, W))

class TGrow(nn.Module):
    def __init__(self, n_f, stride):
        super().__init__()
        self.stride = stride
        self.conv = nn.Conv2d(n_f, n_f*stride, 1, bias=False)
    def forward(self, x):
        _NT, C, H, W = x.shape
        x = self.conv(x)
        return x.reshape(-1, C, H, W)

def apply_model_with_memblocks(model, x, parallel, show_progress_bar):
    """
    Apply a sequential model with memblocks to the given input.
    Args:
    - model: nn.Sequential of blocks to apply
    - x: input data, of dimensions NTCHW
    - parallel: if True, parallelize over timesteps (fast but uses O(T) memory)
        if False, each timestep will be processed sequentially (slow but uses O(1) memory)
    - show_progress_bar: if True, enables tqdm progressbar display

    Returns NTCHW tensor of output data.
    """
    assert x.ndim == 5, f"TAEHV operates on NTCHW tensors, but got {x.ndim}-dim tensor"
    N, T, C, H, W = x.shape
    if parallel:
        x = x.reshape(N*T, C, H, W)
        # parallel over input timesteps, iterate over blocks
        for b in tqdm(model, disable=not show_progress_bar):
            if isinstance(b, MemBlock):
                NT, C, H, W = x.shape
                T = NT // N
                _x = x.reshape(N, T, C, H, W)
                mem = F.pad(_x, (0,0,0,0,0,0,1,0), value=0)[:,:T].reshape(x.shape) 
                x = b(x, mem)
            else:
                x = b(x)
        NT, C, H, W = x.shape
        T = NT // N
        x = x.view(N, T, C, H, W)
    else:
        # TODO(oboerbohan): at least on macos this still gradually uses more memory during decode...
        # need to fix :(
        out = []
        # iterate over input timesteps and also iterate over blocks.
        # because of the cursed TPool/TGrow blocks, this is not a nested loop,
        # it's actually a ***graph traversal*** problem! so let's make a queue
        work_queue = [TWorkItem(xt, 0) for t, xt in enumerate(x.reshape(N, T * C, H, W).chunk(T, dim=1))]
        # in addition to manually managing our queue, we also need to manually manage our progressbar.
        # we'll update it for every source node that we consume.
        progress_bar = tqdm(range(T), disable=not show_progress_bar)
        # we'll also need a separate addressable memory per node as well
        mem = [None] * len(model)
        while work_queue:
            xt, i = work_queue.pop(0)
            if i == 0:
                # new source node consumed
                progress_bar.update(1)
            if i == len(model):
                # reached end of the graph, append result to output list
                out.append(xt)
            else:
                # fetch the block to process
                b = model[i]
                if isinstance(b, MemBlock):
                    # mem blocks are simple since we're visiting the graph in causal order
                    if mem[i] is None:
                        xt_new = b(xt, xt * 0)
                        mem[i] = xt
                    else:
                        xt_new = b(xt, mem[i])
                        mem[i].copy_(xt) # inplace might reduce mysterious pytorch memory allocations? doesn't help though
                    # add successor to work queue
                    work_queue.insert(0, TWorkItem(xt_new, i+1))
                elif isinstance(b, TPool):
                    # pool blocks are miserable
                    if mem[i] is None:
                        mem[i] = [] # pool memory is itself a queue of inputs to pool
                    mem[i].append(xt)
                    if len(mem[i]) > b.stride:
                        # pool mem is in invalid state, we should have pooled before this
                        raise ValueError("???")
                    elif len(mem[i]) < b.stride:
                        # pool mem is not yet full, go back to processing the work queue
                        pass
                    else:
                        # pool mem is ready, run the pool block
                        N, C, H, W = xt.shape 
                        xt = b(torch.cat(mem[i], 1).view(N*b.stride, C, H, W))
                        # reset the pool mem
                        mem[i] = []
                        # add successor to work queue
                        work_queue.insert(0, TWorkItem(xt, i+1))
                elif isinstance(b, TGrow):
                    xt = b(xt)
                    NT, C, H, W = xt.shape
                    # each tgrow has multiple successor nodes
                    for xt_next in reversed(xt.view(N, b.stride*C, H, W).chunk(b.stride, 1)):
                        # add successor to work queue
                        work_queue.insert(0, TWorkItem(xt_next, i+1))
                else:
                    # normal block with no funny business
                    xt = b(xt)
                    # add successor to work queue
                    work_queue.insert(0, TWorkItem(xt, i+1))
        progress_bar.close()
        x = torch.stack(out, 1)
    return x

class TAEHV(nn.Module):
    latent_channels = 16
    image_channels = 3
    def __init__(self, state_dict, decoder_time_upscale=(True, True), decoder_space_upscale=(True, True, True)):
        """Initialize pretrained TAEHV from the given checkpoint.

        Arg:
            checkpoint_path: path to weight file to load. taehv.pth for Hunyuan, taew2_1.pth for Wan 2.1.
            decoder_time_upscale: whether temporal upsampling is enabled for each block. upsampling can be disabled for a cheaper preview.
            decoder_space_upscale: whether spatial upsampling is enabled for each block. upsampling can be disabled for a cheaper preview.
        """
        super().__init__()
        self.encoder = nn.Sequential(
            conv(TAEHV.image_channels, 64), nn.ReLU(inplace=True),
            TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64), MemBlock(64, 64), MemBlock(64, 64),
            TPool(64, 2), conv(64, 64, stride=2, bias=False), MemBlock(64, 64), MemBlock(64, 64), MemBlock(64, 64),
            TPool(64, 1), conv(64, 64, stride=2, bias=False), MemBlock(64, 64), MemBlock(64, 64), MemBlock(64, 64),
            conv(64, TAEHV.latent_channels),
        )
        n_f = [256, 128, 64, 64]
        self.frames_to_trim = 2**sum(decoder_time_upscale) - 1
        self.decoder = nn.Sequential(
            Clamp(), conv(TAEHV.latent_channels, n_f[0]), nn.ReLU(inplace=True),
            MemBlock(n_f[0], n_f[0]), MemBlock(n_f[0], n_f[0]), MemBlock(n_f[0], n_f[0]), nn.Upsample(scale_factor=2 if decoder_space_upscale[0] else 1), TGrow(n_f[0], 1), conv(n_f[0], n_f[1], bias=False),
            MemBlock(n_f[1], n_f[1]), MemBlock(n_f[1], n_f[1]), MemBlock(n_f[1], n_f[1]), nn.Upsample(scale_factor=2 if decoder_space_upscale[1] else 1), TGrow(n_f[1], 2 if decoder_time_upscale[0] else 1), conv(n_f[1], n_f[2], bias=False),
            MemBlock(n_f[2], n_f[2]), MemBlock(n_f[2], n_f[2]), MemBlock(n_f[2], n_f[2]), nn.Upsample(scale_factor=2 if decoder_space_upscale[2] else 1), TGrow(n_f[2], 2 if decoder_time_upscale[1] else 1), conv(n_f[2], n_f[3], bias=False),
            nn.ReLU(inplace=True), conv(n_f[3], TAEHV.image_channels),
        )
        if state_dict is not None:
            self.load_state_dict(self.patch_tgrow_layers(state_dict))

    def patch_tgrow_layers(self, sd):
        """Patch TGrow layers to use a smaller kernel if needed.

        Args:
            sd: state dict to patch
        """
        new_sd = self.state_dict()
        for i, layer in enumerate(self.decoder):
            if isinstance(layer, TGrow):
                key = f"decoder.{i}.conv.weight"
                if sd[key].shape[0] > new_sd[key].shape[0]:
                    # take the last-timestep output channels
                    sd[key] = sd[key][-new_sd[key].shape[0]:]
        return sd

    def encode_video(self, x, parallel=True, show_progress_bar=True):
        """Encode a sequence of frames.

        Args:
            x: input NTCHW RGB (C=3) tensor with values in [0, 1].
            parallel: if True, all frames will be processed at once.
              (this is faster but may require more memory).
              if False, frames will be processed sequentially.
        Returns NTCHW latent tensor with ~Gaussian values.
        """
        return apply_model_with_memblocks(self.encoder, x, parallel, show_progress_bar)

    def decode_video(self, x, parallel=True, show_progress_bar=True):
        """Decode a sequence of frames.

        Args:
            x: input NTCHW latent (C=12) tensor with ~Gaussian values.
            parallel: if True, all frames will be processed at once.
              (this is faster but may require more memory).
              if False, frames will be processed sequentially.
        Returns NTCHW RGB tensor with ~[0, 1] values.
        """
        x = apply_model_with_memblocks(self.decoder, x, False, show_progress_bar)
        return x[:, self.frames_to_trim:]

    def forward(self, x):
        return self.c(x)