import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load your fine-tuned model model_id = "ragunath-ravi/distilgpt2-lmsys-chat" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Set padding token to be the same as EOS token if not set if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Move model to GPU if available device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Format the conversation history as expected by the model prompt = system_message + "\n\n" for user_msg, assistant_msg in history: if user_msg: prompt += f"User: {user_msg}\n" if assistant_msg: prompt += f"Assistant: {assistant_msg}\n" # Add the latest user message prompt += f"User: {message}\nAssistant:" # Tokenize the prompt inputs = tokenizer(prompt, return_tensors="pt").to(device) # Generate response with torch.no_grad(): output = model.generate( inputs["input_ids"], max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, attention_mask=inputs["attention_mask"], ) # Decode the generated response full_response = tokenizer.decode(output[0], skip_special_tokens=True) # Extract only the assistant's part from the full response assistant_response = full_response[len(prompt):].strip() # Sometimes the model might continue with "User:" - we need to cut that off if "User:" in assistant_response: assistant_response = assistant_response.split("User:")[0].strip() # Stream the response token by token (simulated for this model) response_so_far = "" tokens = assistant_response.split() for token in tokens: response_so_far += token + " " yield response_so_far.strip() # Create the Gradio chat interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)", ), ], title="DistilGPT-2 Chat Assistant", description="A simple chatbot powered by a fine-tuned DistilGPT-2 model on the LMSYS Chat 1M dataset.", ) if __name__ == "__main__": demo.launch()