ragunath-ravi commited on
Commit
be678b6
·
verified ·
1 Parent(s): fc46bf1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -38
app.py CHANGED
@@ -1,11 +1,19 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,50 +23,68 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
  minimum=0.1,
54
  maximum=1.0,
55
- value=0.95,
56
  step=0.05,
57
  label="Top-p (nucleus sampling)",
58
  ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
 
5
+ # Load your fine-tuned model
6
+ model_id = "ragunath-ravi/distilgpt2-lmsys-chat"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
8
+ model = AutoModelForCausalLM.from_pretrained(model_id)
9
 
10
+ # Set padding token to be the same as EOS token if not set
11
+ if tokenizer.pad_token is None:
12
+ tokenizer.pad_token = tokenizer.eos_token
13
+
14
+ # Move model to GPU if available
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+ model = model.to(device)
17
 
18
  def respond(
19
  message,
 
23
  temperature,
24
  top_p,
25
  ):
26
+ # Format the conversation history as expected by the model
27
+ prompt = system_message + "\n\n"
28
+
29
+ for user_msg, assistant_msg in history:
30
+ if user_msg:
31
+ prompt += f"User: {user_msg}\n"
32
+ if assistant_msg:
33
+ prompt += f"Assistant: {assistant_msg}\n"
34
+
35
+ # Add the latest user message
36
+ prompt += f"User: {message}\nAssistant:"
37
+
38
+ # Tokenize the prompt
39
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
40
+
41
+ # Generate response
42
+ with torch.no_grad():
43
+ output = model.generate(
44
+ inputs["input_ids"],
45
+ max_new_tokens=max_tokens,
46
+ temperature=temperature,
47
+ top_p=top_p,
48
+ do_sample=True,
49
+ pad_token_id=tokenizer.eos_token_id,
50
+ attention_mask=inputs["attention_mask"],
51
+ )
52
+
53
+ # Decode the generated response
54
+ full_response = tokenizer.decode(output[0], skip_special_tokens=True)
55
+
56
+ # Extract only the assistant's part from the full response
57
+ assistant_response = full_response[len(prompt):].strip()
58
+
59
+ # Sometimes the model might continue with "User:" - we need to cut that off
60
+ if "User:" in assistant_response:
61
+ assistant_response = assistant_response.split("User:")[0].strip()
62
+
63
+ # Stream the response token by token (simulated for this model)
64
+ response_so_far = ""
65
+ tokens = assistant_response.split()
66
+ for token in tokens:
67
+ response_so_far += token + " "
68
+ yield response_so_far.strip()
69
 
70
+ # Create the Gradio chat interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  demo = gr.ChatInterface(
72
  respond,
73
  additional_inputs=[
74
+ gr.Textbox(value="You are a helpful assistant.", label="System message"),
75
+ gr.Slider(minimum=1, maximum=512, value=128, step=1, label="Max new tokens"),
76
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
77
  gr.Slider(
78
  minimum=0.1,
79
  maximum=1.0,
80
+ value=0.9,
81
  step=0.05,
82
  label="Top-p (nucleus sampling)",
83
  ),
84
  ],
85
+ title="DistilGPT-2 Chat Assistant",
86
+ description="A simple chatbot powered by a fine-tuned DistilGPT-2 model on the LMSYS Chat 1M dataset.",
87
  )
88
 
 
89
  if __name__ == "__main__":
90
+ demo.launch()