import gradio as gr import os import json import uuid import asyncio from datetime import datetime from typing import List, Dict, Any, Optional, Generator import logging # Import required libraries from huggingface_hub import InferenceClient from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.docstore.document import Document # Import document parsers import PyPDF2 from pptx import Presentation import pandas as pd from docx import Document as DocxDocument import io # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Get HuggingFace token from environment HF_TOKEN = os.getenv("hf_token") if not HF_TOKEN: raise ValueError("HuggingFace token not found in environment variables") # Initialize HuggingFace Inference Client client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN) # Initialize embeddings embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") class MCPMessage: """Model Context Protocol Message Structure""" def __init__(self, sender: str, receiver: str, msg_type: str, trace_id: str = None, payload: Dict = None): self.sender = sender self.receiver = receiver self.type = msg_type self.trace_id = trace_id or str(uuid.uuid4()) self.payload = payload or {} self.timestamp = datetime.now().isoformat() def to_dict(self): return { "sender": self.sender, "receiver": self.receiver, "type": self.type, "trace_id": self.trace_id, "payload": self.payload, "timestamp": self.timestamp } class MessageBus: """In-memory message bus for MCP communication""" def __init__(self): self.messages = [] self.subscribers = {} def publish(self, message: MCPMessage): """Publish message to the bus""" self.messages.append(message) logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]") # Notify subscribers if message.receiver in self.subscribers: for callback in self.subscribers[message.receiver]: callback(message) def subscribe(self, agent_name: str, callback): """Subscribe agent to receive messages""" if agent_name not in self.subscribers: self.subscribers[agent_name] = [] self.subscribers[agent_name].append(callback) # Global message bus message_bus = MessageBus() class IngestionAgent: """Agent responsible for document parsing and preprocessing""" def __init__(self, message_bus: MessageBus): self.name = "IngestionAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) self.text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200 ) def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "INGESTION_REQUEST": self.process_documents(message) def parse_pdf(self, file_path: str) -> str: """Parse PDF document""" try: with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) text = "" for page in pdf_reader.pages: text += page.extract_text() return text except Exception as e: logger.error(f"Error parsing PDF: {e}") return "" def parse_pptx(self, file_path: str) -> str: """Parse PPTX document""" try: prs = Presentation(file_path) text = "" for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" return text except Exception as e: logger.error(f"Error parsing PPTX: {e}") return "" def parse_csv(self, file_path: str) -> str: """Parse CSV document""" try: df = pd.read_csv(file_path) return df.to_string() except Exception as e: logger.error(f"Error parsing CSV: {e}") return "" def parse_docx(self, file_path: str) -> str: """Parse DOCX document""" try: doc = DocxDocument(file_path) text = "" for paragraph in doc.paragraphs: text += paragraph.text + "\n" return text except Exception as e: logger.error(f"Error parsing DOCX: {e}") return "" def parse_txt(self, file_path: str) -> str: """Parse TXT/Markdown document""" try: with open(file_path, 'r', encoding='utf-8') as file: return file.read() except Exception as e: logger.error(f"Error parsing TXT: {e}") return "" def process_documents(self, message: MCPMessage): """Process uploaded documents""" files = message.payload.get("files", []) processed_docs = [] for file_path in files: file_ext = os.path.splitext(file_path)[1].lower() # Parse document based on file type if file_ext == '.pdf': text = self.parse_pdf(file_path) elif file_ext == '.pptx': text = self.parse_pptx(file_path) elif file_ext == '.csv': text = self.parse_csv(file_path) elif file_ext == '.docx': text = self.parse_docx(file_path) elif file_ext in ['.txt', '.md']: text = self.parse_txt(file_path) else: logger.warning(f"Unsupported file type: {file_ext}") continue if text: # Split text into chunks chunks = self.text_splitter.split_text(text) docs = [Document(page_content=chunk, metadata={"source": file_path}) for chunk in chunks] processed_docs.extend(docs) # Send processed documents to RetrievalAgent response = MCPMessage( sender=self.name, receiver="RetrievalAgent", msg_type="INGESTION_COMPLETE", trace_id=message.trace_id, payload={"documents": processed_docs} ) self.message_bus.publish(response) class RetrievalAgent: """Agent responsible for embedding and semantic retrieval""" def __init__(self, message_bus: MessageBus): self.name = "RetrievalAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) self.vector_store = None def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "INGESTION_COMPLETE": self.create_vector_store(message) elif message.type == "RETRIEVAL_REQUEST": self.retrieve_context(message) def create_vector_store(self, message: MCPMessage): """Create vector store from processed documents""" documents = message.payload.get("documents", []) if documents: try: self.vector_store = FAISS.from_documents(documents, embeddings) logger.info(f"Vector store created with {len(documents)} documents") # Notify completion response = MCPMessage( sender=self.name, receiver="CoordinatorAgent", msg_type="VECTORSTORE_READY", trace_id=message.trace_id, payload={"status": "ready"} ) self.message_bus.publish(response) except Exception as e: logger.error(f"Error creating vector store: {e}") def retrieve_context(self, message: MCPMessage): """Retrieve relevant context for a query""" query = message.payload.get("query", "") k = message.payload.get("k", 3) if self.vector_store and query: try: docs = self.vector_store.similarity_search(query, k=k) context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")} for doc in docs] response = MCPMessage( sender=self.name, receiver="LLMResponseAgent", msg_type="CONTEXT_RESPONSE", trace_id=message.trace_id, payload={ "query": query, "retrieved_context": context, "top_chunks": [doc.page_content for doc in docs] } ) self.message_bus.publish(response) except Exception as e: logger.error(f"Error retrieving context: {e}") class LLMResponseAgent: """Agent responsible for generating LLM responses""" def __init__(self, message_bus: MessageBus): self.name = "LLMResponseAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "CONTEXT_RESPONSE": self.generate_response(message) def generate_response(self, message: MCPMessage): """Generate response using retrieved context""" query = message.payload.get("query", "") context = message.payload.get("retrieved_context", []) # Build prompt with context context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}" for ctx in context]) prompt = f"""Based on the following context, please answer the user's question accurately and comprehensively. Context: {context_text} Question: {query} Answer:""" try: # Generate streaming response response_stream = client.text_generation( prompt, max_new_tokens=512, temperature=0.7, stream=True ) # Send streaming response response = MCPMessage( sender=self.name, receiver="CoordinatorAgent", msg_type="LLM_RESPONSE_STREAM", trace_id=message.trace_id, payload={ "query": query, "response_stream": response_stream, "context": context } ) self.message_bus.publish(response) except Exception as e: logger.error(f"Error generating response: {e}") class CoordinatorAgent: """Coordinator agent that orchestrates the entire workflow""" def __init__(self, message_bus: MessageBus): self.name = "CoordinatorAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) self.current_response_stream = None self.vector_store_ready = False def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "VECTORSTORE_READY": self.vector_store_ready = True elif message.type == "LLM_RESPONSE_STREAM": self.current_response_stream = message.payload.get("response_stream") def process_files(self, files): """Process uploaded files""" if not files: return "No files uploaded." file_paths = [file.name for file in files] # Send ingestion request message = MCPMessage( sender=self.name, receiver="IngestionAgent", msg_type="INGESTION_REQUEST", payload={"files": file_paths} ) self.message_bus.publish(message) return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}" def handle_query(self, query: str, history: List): """Handle user query and return streaming response""" if not self.vector_store_ready: yield "Please upload and process documents first." return # Send retrieval request message = MCPMessage( sender=self.name, receiver="RetrievalAgent", msg_type="RETRIEVAL_REQUEST", payload={"query": query} ) self.message_bus.publish(message) # Wait for response and stream import time timeout = 10 # seconds start_time = time.time() while not self.current_response_stream and (time.time() - start_time) < timeout: time.sleep(0.1) if self.current_response_stream: partial_response = "" try: for token in self.current_response_stream: if token: partial_response += token yield partial_response time.sleep(0.05) # Simulate streaming delay except Exception as e: yield f"Error generating response: {e}" finally: self.current_response_stream = None else: yield "Timeout: No response received from LLM agent." # Initialize agents ingestion_agent = IngestionAgent(message_bus) retrieval_agent = RetrievalAgent(message_bus) llm_response_agent = LLMResponseAgent(message_bus) coordinator_agent = CoordinatorAgent(message_bus) # Gradio Interface def create_interface(): """Create Gradio interface""" with gr.Blocks( theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple"), css=""" .gradio-container { max-width: 1200px !important; } .header-text { text-align: center; color: #667eea; font-size: 2.5em; font-weight: bold; margin-bottom: 10px; } .subheader-text { text-align: center; color: #666; font-size: 1.2em; margin-bottom: 20px; } .upload-section { border: 2px dashed #667eea; border-radius: 10px; padding: 20px; margin: 10px 0; } .chat-container { height: 500px; } """, title="🤖 Agentic RAG Chatbot" ) as iface: # Header gr.HTML("""
🤖 Agentic RAG Chatbot
Multi-Format Document QA with Model Context Protocol (MCP)
""") with gr.Row(): with gr.Column(scale=1): gr.Markdown("## 📁 Document Upload") file_upload = gr.File( file_count="multiple", file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"], label="Upload Documents (PDF, PPTX, CSV, DOCX, TXT, MD)", elem_classes=["upload-section"] ) upload_status = gr.Textbox( label="Upload Status", interactive=False, max_lines=3 ) process_btn = gr.Button( "🔄 Process Documents", variant="primary", size="lg" ) gr.Markdown("## 🏗️ Architecture Info") gr.Markdown(""" **Agents:** - 🔄 IngestionAgent: Document parsing - 🔍 RetrievalAgent: Semantic search - 🤖 LLMResponseAgent: Response generation - 🎯 CoordinatorAgent: Workflow orchestration **MCP Communication:** Structured message passing between agents """) with gr.Column(scale=2): gr.Markdown("## 💬 Chat Interface") chatbot = gr.Chatbot( height=500, elem_classes=["chat-container"], show_copy_button=True, type="messages" ) with gr.Row(): msg = gr.Textbox( label="Ask a question about your documents...", placeholder="What are the key findings in the uploaded documents?", scale=4 ) submit_btn = gr.Button("Send 🚀", scale=1, variant="primary") gr.Examples( examples=[ "What are the main topics discussed in the documents?", "Can you summarize the key findings?", "What metrics or KPIs are mentioned?", "What recommendations are provided?", "Are there any trends or patterns identified?" ], inputs=msg ) # Event handlers def process_files_handler(files): return coordinator_agent.process_files(files) def respond(message, history): if message.strip(): # Add user message to history history.append([message, ""]) # Get streaming response for response in coordinator_agent.handle_query(message, history): history[-1][1] = response yield history, "" else: yield history, message process_btn.click( process_files_handler, inputs=[file_upload], outputs=[upload_status] ) submit_btn.click( respond, inputs=[msg, chatbot], outputs=[chatbot, msg], show_progress=True ) msg.submit( respond, inputs=[msg, chatbot], outputs=[chatbot, msg], show_progress=True ) return iface # Launch the application if __name__ == "__main__": demo = create_interface() demo.launch( share=True, server_name="0.0.0.0", server_port=7860 )