import gradio as gr import os import json import uuid import asyncio from datetime import datetime from typing import List, Dict, Any, Optional, Generator import logging # Import required libraries from huggingface_hub import InferenceClient from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.docstore.document import Document # Import document parsers import PyPDF2 from pptx import Presentation import pandas as pd from docx import Document as DocxDocument import io # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Get HuggingFace token from environment HF_TOKEN = os.getenv("hf_token") if not HF_TOKEN: raise ValueError("HuggingFace token not found in environment variables") # Initialize HuggingFace Inference Client client = InferenceClient(model="meta-llama/Llama-3.1-8B-Instruct", token=HF_TOKEN) # Initialize embeddings embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") class MCPMessage: """Model Context Protocol Message Structure""" def __init__(self, sender: str, receiver: str, msg_type: str, trace_id: str = None, payload: Dict = None): self.sender = sender self.receiver = receiver self.type = msg_type self.trace_id = trace_id or str(uuid.uuid4()) self.payload = payload or {} self.timestamp = datetime.now().isoformat() def to_dict(self): return { "sender": self.sender, "receiver": self.receiver, "type": self.type, "trace_id": self.trace_id, "payload": self.payload, "timestamp": self.timestamp } class MessageBus: """In-memory message bus for MCP communication""" def __init__(self): self.messages = [] self.subscribers = {} def publish(self, message: MCPMessage): """Publish message to the bus""" self.messages.append(message) logger.info(f"Message published: {message.sender} -> {message.receiver} [{message.type}]") # Notify subscribers if message.receiver in self.subscribers: for callback in self.subscribers[message.receiver]: callback(message) def subscribe(self, agent_name: str, callback): """Subscribe agent to receive messages""" if agent_name not in self.subscribers: self.subscribers[agent_name] = [] self.subscribers[agent_name].append(callback) # Global message bus message_bus = MessageBus() class IngestionAgent: """Agent responsible for document parsing and preprocessing""" def __init__(self, message_bus: MessageBus): self.name = "IngestionAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) self.text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200 ) def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "INGESTION_REQUEST": self.process_documents(message) def parse_pdf(self, file_path: str) -> str: """Parse PDF document""" try: with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) text = "" for page in pdf_reader.pages: text += page.extract_text() return text except Exception as e: logger.error(f"Error parsing PDF: {e}") return "" def parse_pptx(self, file_path: str) -> str: """Parse PPTX document""" try: prs = Presentation(file_path) text = "" for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" return text except Exception as e: logger.error(f"Error parsing PPTX: {e}") return "" def parse_csv(self, file_path: str) -> str: """Parse CSV document""" try: df = pd.read_csv(file_path) return df.to_string() except Exception as e: logger.error(f"Error parsing CSV: {e}") return "" def parse_docx(self, file_path: str) -> str: """Parse DOCX document""" try: doc = DocxDocument(file_path) text = "" for paragraph in doc.paragraphs: text += paragraph.text + "\n" return text except Exception as e: logger.error(f"Error parsing DOCX: {e}") return "" def parse_txt(self, file_path: str) -> str: """Parse TXT/Markdown document""" try: with open(file_path, 'r', encoding='utf-8') as file: return file.read() except Exception as e: logger.error(f"Error parsing TXT: {e}") return "" def process_documents(self, message: MCPMessage): """Process uploaded documents""" files = message.payload.get("files", []) processed_docs = [] for file_path in files: file_ext = os.path.splitext(file_path)[1].lower() # Parse document based on file type if file_ext == '.pdf': text = self.parse_pdf(file_path) elif file_ext == '.pptx': text = self.parse_pptx(file_path) elif file_ext == '.csv': text = self.parse_csv(file_path) elif file_ext == '.docx': text = self.parse_docx(file_path) elif file_ext in ['.txt', '.md']: text = self.parse_txt(file_path) else: logger.warning(f"Unsupported file type: {file_ext}") continue if text: # Split text into chunks chunks = self.text_splitter.split_text(text) docs = [Document(page_content=chunk, metadata={"source": file_path}) for chunk in chunks] processed_docs.extend(docs) # Send processed documents to RetrievalAgent response = MCPMessage( sender=self.name, receiver="RetrievalAgent", msg_type="INGESTION_COMPLETE", trace_id=message.trace_id, payload={"documents": processed_docs} ) self.message_bus.publish(response) class RetrievalAgent: """Agent responsible for embedding and semantic retrieval""" def __init__(self, message_bus: MessageBus): self.name = "RetrievalAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) self.vector_store = None def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "INGESTION_COMPLETE": self.create_vector_store(message) elif message.type == "RETRIEVAL_REQUEST": self.retrieve_context(message) def create_vector_store(self, message: MCPMessage): """Create vector store from processed documents""" documents = message.payload.get("documents", []) if documents: try: self.vector_store = FAISS.from_documents(documents, embeddings) logger.info(f"Vector store created with {len(documents)} documents") # Notify completion response = MCPMessage( sender=self.name, receiver="CoordinatorAgent", msg_type="VECTORSTORE_READY", trace_id=message.trace_id, payload={"status": "ready"} ) self.message_bus.publish(response) except Exception as e: logger.error(f"Error creating vector store: {e}") def retrieve_context(self, message: MCPMessage): """Retrieve relevant context for a query""" query = message.payload.get("query", "") k = message.payload.get("k", 3) if self.vector_store and query: try: docs = self.vector_store.similarity_search(query, k=k) context = [{"content": doc.page_content, "source": doc.metadata.get("source", "")} for doc in docs] response = MCPMessage( sender=self.name, receiver="LLMResponseAgent", msg_type="CONTEXT_RESPONSE", trace_id=message.trace_id, payload={ "query": query, "retrieved_context": context, "top_chunks": [doc.page_content for doc in docs] } ) self.message_bus.publish(response) except Exception as e: logger.error(f"Error retrieving context: {e}") class LLMResponseAgent: """Agent responsible for generating LLM responses""" def __init__(self, message_bus: MessageBus): self.name = "LLMResponseAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "CONTEXT_RESPONSE": self.generate_response(message) def generate_response(self, message: MCPMessage): """Generate response using retrieved context""" query = message.payload.get("query", "") context = message.payload.get("retrieved_context", []) # Build context string context_text = "\n\n".join([f"Source: {ctx['source']}\nContent: {ctx['content']}" for ctx in context]) # Create messages for conversational format messages = [ { "role": "system", "content": "You are a helpful assistant. Based on the provided context below, answer the user's question accurately and comprehensively. Cite the sources if possible.", }, { "role": "user", "content": f"Context:\n\n{context_text}\n\nQuestion: {query}" } ] try: # Use client.chat_completion for conversational models response_stream = client.chat_completion( messages=messages, max_tokens=512, temperature=0.7, stream=True ) # Send streaming response response = MCPMessage( sender=self.name, receiver="CoordinatorAgent", msg_type="LLM_RESPONSE_STREAM", trace_id=message.trace_id, payload={ "query": query, "response_stream": response_stream, "context": context } ) self.message_bus.publish(response) except Exception as e: logger.error(f"Error generating response: {e}") # Send an error stream back error_msg = f"Error from LLM: {e}" def error_generator(): yield error_msg response = MCPMessage( sender=self.name, receiver="CoordinatorAgent", msg_type="LLM_RESPONSE_STREAM", trace_id=message.trace_id, payload={"response_stream": error_generator()} ) self.message_bus.publish(response) class CoordinatorAgent: """Coordinator agent that orchestrates the entire workflow""" def __init__(self, message_bus: MessageBus): self.name = "CoordinatorAgent" self.message_bus = message_bus self.message_bus.subscribe(self.name, self.handle_message) self.current_response_stream = None self.vector_store_ready = False def handle_message(self, message: MCPMessage): """Handle incoming MCP messages""" if message.type == "VECTORSTORE_READY": self.vector_store_ready = True elif message.type == "LLM_RESPONSE_STREAM": self.current_response_stream = message.payload.get("response_stream") def process_files(self, files): """Process uploaded files""" if not files: return "No files uploaded." file_paths = [file.name for file in files] # Send ingestion request message = MCPMessage( sender=self.name, receiver="IngestionAgent", msg_type="INGESTION_REQUEST", payload={"files": file_paths} ) self.message_bus.publish(message) return f"Processing {len(files)} files: {', '.join([os.path.basename(fp) for fp in file_paths])}" def handle_query(self, query: str, history: List) -> Generator[str, None, None]: """Handle user query and return streaming response""" if not self.vector_store_ready: yield "Please upload and process documents first." return # Send retrieval request message = MCPMessage( sender=self.name, receiver="RetrievalAgent", msg_type="RETRIEVAL_REQUEST", payload={"query": query} ) self.message_bus.publish(message) # Wait for response and stream import time timeout = 20 # seconds start_time = time.time() while not self.current_response_stream and (time.time() - start_time) < timeout: time.sleep(0.1) if self.current_response_stream: try: # Stream tokens directly for chunk in self.current_response_stream: # The token is in chunk.choices[0].delta.content for chat_completion token = chunk.choices[0].delta.content if token: yield token except Exception as e: yield f"Error streaming response: {e}" finally: self.current_response_stream = None # Reset for next query else: yield "Timeout: No response received from LLM agent." # Initialize agents ingestion_agent = IngestionAgent(message_bus) retrieval_agent = RetrievalAgent(message_bus) llm_response_agent = LLMResponseAgent(message_bus) coordinator_agent = CoordinatorAgent(message_bus) # Gradio Interface def create_interface(): """Create modern ChatGPT-like Gradio interface""" with gr.Blocks( theme=gr.themes.Soft(), css=""" /* Main container styling */ .gradio-container { max-width: 100vw !important; margin: 0 !important; padding: 0 !important; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; min-height: 100vh; } /* Header styling */ .header-container { background: rgba(255, 255, 255, 0.95); backdrop-filter: blur(10px); border-bottom: 1px solid rgba(255, 255, 255, 0.2); padding: 1rem 2rem; box-shadow: 0 2px 20px rgba(0, 0, 0, 0.1); } .header-title { font-size: 2.5rem; font-weight: 700; background: linear-gradient(135deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; text-align: center; margin: 0; } .header-subtitle { font-size: 1.1rem; color: #6b7280; text-align: center; margin-top: 0.5rem; font-weight: 400; } /* Sidebar styling */ .sidebar { background: rgba(255, 255, 255, 0.95) !important; backdrop-filter: blur(10px); border-right: 1px solid rgba(255, 255, 255, 0.2); padding: 2rem 1.5rem !important; min-height: calc(100vh - 100px); box-shadow: 2px 0 20px rgba(0, 0, 0, 0.05); } .sidebar h3 { color: #374151; font-weight: 600; margin-bottom: 1rem; font-size: 1.2rem; } /* Upload area styling */ .upload-area { background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%); border: 2px dashed #667eea; border-radius: 12px; padding: 2rem 1rem; margin: 1rem 0; transition: all 0.3s ease; text-align: center; } .upload-area:hover { border-color: #764ba2; background: linear-gradient(135deg, #f1f5f9 0%, #ddd6fe 100%); transform: translateY(-2px); box-shadow: 0 4px 15px rgba(102, 126, 234, 0.2); } /* Process button styling */ .process-btn { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; border: none !important; border-radius: 8px !important; padding: 0.75rem 2rem !important; color: white !important; font-weight: 600 !important; transition: all 0.3s ease !important; box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important; } .process-btn:hover { transform: translateY(-2px) !important; box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important; } /* Chat container styling */ .chat-container { background: rgba(255, 255, 255, 0.95) !important; backdrop-filter: blur(10px); border-radius: 16px !important; margin: 2rem; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important; overflow: hidden; min-height: calc(100vh - 200px); } /* Chatbot styling */ .chatbot { background: transparent !important; border: none !important; } /* Message input styling */ .message-input { background: rgba(255, 255, 255, 0.9) !important; border: 2px solid rgba(102, 126, 234, 0.2) !important; border-radius: 25px !important; padding: 0.75rem 1.5rem !important; font-size: 1rem !important; transition: all 0.3s ease !important; } .message-input:focus { border-color: #667eea !important; box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important; outline: none !important; } /* Send button styling */ .send-btn { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; border: none !important; border-radius: 50% !important; width: 48px !important; height: 48px !important; display: flex !important; align-items: center !important; justify-content: center !important; color: white !important; font-weight: 600 !important; transition: all 0.3s ease !important; box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important; margin-left: 0.5rem !important; } .send-btn:hover { transform: scale(1.05) !important; box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important; } /* Status display styling */ .status-display { background: linear-gradient(135deg, #f0f9ff 0%, #e0e7ff 100%) !important; border: 1px solid rgba(102, 126, 234, 0.2) !important; border-radius: 8px !important; padding: 1rem !important; margin: 1rem 0 !important; font-family: 'SF Mono', 'Monaco', monospace !important; font-size: 0.9rem !important; } /* Info section styling */ .info-section { background: linear-gradient(135deg, #f8fafc 0%, #f1f5f9 100%); border-radius: 12px; padding: 1.5rem; margin-top: 2rem; border: 1px solid rgba(102, 126, 234, 0.1); } .info-section h4 { color: #374151; font-weight: 600; margin-bottom: 1rem; font-size: 1.1rem; } .info-section p { color: #6b7280; font-size: 0.9rem; line-height: 1.5; margin: 0.5rem 0; } /* Examples styling */ .examples-container { padding: 1rem 2rem; } .example-btn { background: rgba(255, 255, 255, 0.8) !important; border: 1px solid rgba(102, 126, 234, 0.3) !important; border-radius: 20px !important; padding: 0.5rem 1rem !important; margin: 0.25rem !important; font-size: 0.9rem !important; color: #374151 !important; transition: all 0.3s ease !important; } .example-btn:hover { background: rgba(102, 126, 234, 0.1) !important; border-color: #667eea !important; transform: translateY(-1px) !important; } /* Responsive design */ @media (max-width: 768px) { .gradio-container { padding: 0 !important; } .header-title { font-size: 2rem; } .sidebar { padding: 1rem !important; } .chat-container { margin: 1rem; } } """, title="AI Document Assistant" ) as iface: # Header gr.HTML("""

AI Document Assistant

Intelligent multi-format document analysis with advanced RAG architecture

""") with gr.Row(): # Sidebar with gr.Column(scale=1, elem_classes=["sidebar"]): gr.HTML("

📁 Document Upload

") file_upload = gr.File( file_count="multiple", file_types=[".pdf", ".pptx", ".csv", ".docx", ".txt", ".md"], label="", elem_classes=["upload-area"], interactive=True ) process_btn = gr.Button( "🚀 Process Documents", variant="primary", elem_classes=["process-btn"], size="lg" ) upload_status = gr.Textbox( label="📊 Status", interactive=False, elem_classes=["status-display"], max_lines=4, show_label=True ) # Info section gr.HTML("""

🤖 AI Agents

Ingestion: Document parsing & preprocessing

Retrieval: Semantic search & context extraction

Response: Intelligent answer generation

Coordinator: Workflow orchestration

🔗 Architecture

Built with Model Context Protocol (MCP) for seamless agent communication and advanced RAG capabilities.

""") # Main chat area with gr.Column(scale=3, elem_classes=["chat-container"]): chatbot = gr.Chatbot( height=600, elem_classes=["chatbot"], show_copy_button=True, type="messages", avatar_images=("🧑‍💼", "🤖"), bubble_full_width=False, show_share_button=True ) # Message input area with gr.Row(): msg = gr.Textbox( label="", placeholder="Ask me anything about your documents...", scale=10, elem_classes=["message-input"], container=False, autofocus=True ) submit_btn = gr.Button( "➤", scale=1, variant="primary", elem_classes=["send-btn"], size="sm" ) # Examples gr.HTML("
") gr.Examples( examples=[ "What are the main topics discussed in the documents?", "Can you summarize the key findings and insights?", "What metrics, KPIs, or data points are mentioned?", "What recommendations or action items are provided?", "Are there any trends, patterns, or correlations identified?", "What are the potential risks or challenges mentioned?" ], inputs=msg, elem_classes=["example-btn"] ) gr.HTML("
") # Event handlers def process_files_handler(files): if files: return coordinator_agent.process_files(files) return "Please select files to upload." def respond(message, history): if message.strip(): # Add user message to history history.append({"role": "user", "content": message}) # Add placeholder for assistant response history.append({"role": "assistant", "content": ""}) # Get streaming response for token in coordinator_agent.handle_query(message, history): history[-1]["content"] += token yield history, "" else: yield history, message def clear_chat(): return [], "" # Event bindings process_btn.click( process_files_handler, inputs=[file_upload], outputs=[upload_status], show_progress=True ) submit_btn.click( respond, inputs=[msg, chatbot], outputs=[chatbot, msg], show_progress="minimal" ) msg.submit( respond, inputs=[msg, chatbot], outputs=[chatbot, msg], show_progress="minimal" ) return iface # Launch the application if __name__ == "__main__": demo = create_interface() demo.launch( share=True, server_name="0.0.0.0", server_port=7860, show_error=True )