File size: 26,196 Bytes
1b4bf2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
import gradio as gr
import os
import tempfile
import uuid
from datetime import datetime
from typing import List, Dict, Any, Optional
import json
import asyncio
from dataclasses import dataclass, asdict
import logging

# Document processing imports
import PyPDF2
import pandas as pd
from docx import Document
from pptx import Presentation
import markdown

# ML/AI imports
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.schema import Document as LCDocument
from huggingface_hub import InferenceClient

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# MCP Message Structure
@dataclass
class MCPMessage:
    sender: str
    receiver: str
    type: str
    trace_id: str
    payload: Dict[str, Any]
    timestamp: str = None
    
    def __post_init__(self):
        if self.timestamp is None:
            self.timestamp = datetime.now().isoformat()
    
    def to_dict(self):
        return asdict(self)

# MCP Communication Layer
class MCPCommunicator:
    def __init__(self):
        self.message_queue = asyncio.Queue()
        self.subscribers = {}
    
    async def send_message(self, message: MCPMessage):
        logger.info(f"MCP: {message.sender} -> {message.receiver}: {message.type}")
        await self.message_queue.put(message)
    
    async def receive_message(self, agent_name: str) -> MCPMessage:
        while True:
            message = await self.message_queue.get()
            if message.receiver == agent_name:
                return message
            # Re-queue if not for this agent
            await self.message_queue.put(message)

# Global MCP instance
mcp = MCPCommunicator()

# Base Agent Class
class BaseAgent:
    def __init__(self, name: str):
        self.name = name
        self.mcp = mcp
    
    async def send_mcp_message(self, receiver: str, msg_type: str, payload: Dict[str, Any], trace_id: str):
        message = MCPMessage(
            sender=self.name,
            receiver=receiver,
            type=msg_type,
            trace_id=trace_id,
            payload=payload
        )
        await self.mcp.send_message(message)
    
    async def receive_mcp_message(self) -> MCPMessage:
        return await self.mcp.receive_message(self.name)

# Document Ingestion Agent
class IngestionAgent(BaseAgent):
    def __init__(self):
        super().__init__("IngestionAgent")
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200,
            length_function=len,
        )
    
    def parse_pdf(self, file_path: str) -> str:
        """Parse PDF file and extract text"""
        try:
            with open(file_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                text = ""
                for page in pdf_reader.pages:
                    text += page.extract_text() + "\n"
                return text
        except Exception as e:
            logger.error(f"Error parsing PDF: {e}")
            return ""
    
    def parse_docx(self, file_path: str) -> str:
        """Parse DOCX file and extract text"""
        try:
            doc = Document(file_path)
            text = ""
            for paragraph in doc.paragraphs:
                text += paragraph.text + "\n"
            return text
        except Exception as e:
            logger.error(f"Error parsing DOCX: {e}")
            return ""
    
    def parse_pptx(self, file_path: str) -> str:
        """Parse PPTX file and extract text"""
        try:
            prs = Presentation(file_path)
            text = ""
            for slide_num, slide in enumerate(prs.slides, 1):
                text += f"Slide {slide_num}:\n"
                for shape in slide.shapes:
                    if hasattr(shape, "text"):
                        text += shape.text + "\n"
                text += "\n"
            return text
        except Exception as e:
            logger.error(f"Error parsing PPTX: {e}")
            return ""
    
    def parse_csv(self, file_path: str) -> str:
        """Parse CSV file and convert to text"""
        try:
            df = pd.read_csv(file_path)
            return df.to_string()
        except Exception as e:
            logger.error(f"Error parsing CSV: {e}")
            return ""
    
    def parse_txt_md(self, file_path: str) -> str:
        """Parse TXT or MD file"""
        try:
            with open(file_path, 'r', encoding='utf-8') as file:
                content = file.read()
                # If markdown, convert to plain text
                if file_path.lower().endswith('.md'):
                    content = markdown.markdown(content)
                return content
        except Exception as e:
            logger.error(f"Error parsing TXT/MD: {e}")
            return ""
    
    async def process_documents(self, files: List[str], trace_id: str) -> List[LCDocument]:
        """Process uploaded documents and return chunked documents"""
        all_documents = []
        
        for file_path in files:
            file_ext = os.path.splitext(file_path)[1].lower()
            filename = os.path.basename(file_path)
            
            # Parse based on file extension
            if file_ext == '.pdf':
                content = self.parse_pdf(file_path)
            elif file_ext == '.docx':
                content = self.parse_docx(file_path)
            elif file_ext == '.pptx':
                content = self.parse_pptx(file_path)
            elif file_ext == '.csv':
                content = self.parse_csv(file_path)
            elif file_ext in ['.txt', '.md']:
                content = self.parse_txt_md(file_path)
            else:
                logger.warning(f"Unsupported file type: {file_ext}")
                continue
            
            if content.strip():
                # Split content into chunks
                chunks = self.text_splitter.split_text(content)
                
                # Create LangChain documents
                for i, chunk in enumerate(chunks):
                    doc = LCDocument(
                        page_content=chunk,
                        metadata={
                            "source": filename,
                            "chunk_id": i,
                            "file_type": file_ext
                        }
                    )
                    all_documents.append(doc)
        
        return all_documents

# Retrieval Agent
class RetrievalAgent(BaseAgent):
    def __init__(self):
        super().__init__("RetrievalAgent")
        self.embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2"
        )
        self.vector_store = None
    
    async def create_vector_store(self, documents: List[LCDocument], trace_id: str):
        """Create vector store from documents"""
        try:
            if documents:
                self.vector_store = FAISS.from_documents(documents, self.embeddings)
                logger.info(f"Created vector store with {len(documents)} documents")
            else:
                logger.warning("No documents to create vector store")
        except Exception as e:
            logger.error(f"Error creating vector store: {e}")
    
    async def retrieve_relevant_chunks(self, query: str, k: int = 5, trace_id: str = None) -> List[Dict]:
        """Retrieve relevant chunks for a query"""
        if not self.vector_store:
            return []
        
        try:
            # Similarity search
            docs = self.vector_store.similarity_search(query, k=k)
            
            # Format results
            results = []
            for doc in docs:
                results.append({
                    "content": doc.page_content,
                    "source": doc.metadata.get("source", "Unknown"),
                    "chunk_id": doc.metadata.get("chunk_id", 0),
                    "file_type": doc.metadata.get("file_type", "Unknown")
                })
            
            return results
        except Exception as e:
            logger.error(f"Error retrieving chunks: {e}")
            return []

# LLM Response Agent
class LLMResponseAgent(BaseAgent):
    def __init__(self, hf_token: str = None):
        super().__init__("LLMResponseAgent")
        self.client = InferenceClient(
            model="meta-llama/Llama-3.1-8B-Instruct",
            token=hf_token
        )
    
    def format_prompt(self, query: str, context_chunks: List[Dict]) -> str:
        """Format prompt with context and query"""
        context_text = "\n\n".join([
            f"Source: {chunk['source']}\nContent: {chunk['content']}"
            for chunk in context_chunks
        ])
        
        prompt = f"""Based on the following context from uploaded documents, please answer the user's question.

Context:
{context_text}

Question: {query}

Please provide a comprehensive answer based on the context above. If the context doesn't contain enough information to fully answer the question, please mention what information is available and what might be missing.

Answer:"""
        
        return prompt
    
    async def generate_response(self, query: str, context_chunks: List[Dict], trace_id: str) -> str:
        """Generate response using LLM"""
        try:
            prompt = self.format_prompt(query, context_chunks)
            
            # Generate response using HuggingFace Inference
            response = self.client.text_generation(
                prompt,
                max_new_tokens=512,
                temperature=0.7,
                do_sample=True,
                return_full_text=False
            )
            
            return response
        except Exception as e:
            logger.error(f"Error generating response: {e}")
            return f"I apologize, but I encountered an error while generating the response: {str(e)}"

# Coordinator Agent
class CoordinatorAgent(BaseAgent):
    def __init__(self, hf_token: str = None):
        super().__init__("CoordinatorAgent")
        self.ingestion_agent = IngestionAgent()
        self.retrieval_agent = RetrievalAgent()
        self.llm_agent = LLMResponseAgent(hf_token)
        self.documents_processed = False
    
    async def process_documents(self, files: List[str]) -> str:
        """Orchestrate document processing"""
        trace_id = str(uuid.uuid4())
        
        try:
            # Step 1: Ingestion
            await self.send_mcp_message(
                "IngestionAgent", 
                "DOCUMENT_INGESTION_REQUEST", 
                {"files": files}, 
                trace_id
            )
            
            documents = await self.ingestion_agent.process_documents(files, trace_id)
            
            await self.send_mcp_message(
                "RetrievalAgent", 
                "VECTOR_STORE_CREATE_REQUEST", 
                {"documents": len(documents)}, 
                trace_id
            )
            
            # Step 2: Create vector store
            await self.retrieval_agent.create_vector_store(documents, trace_id)
            
            self.documents_processed = True
            
            return f"Successfully processed {len(documents)} document chunks from {len(files)} files."
            
        except Exception as e:
            logger.error(f"Error in document processing: {e}")
            return f"Error processing documents: {str(e)}"
    
    async def answer_query(self, query: str) -> tuple[str, List[Dict]]:
        """Orchestrate query answering"""
        if not self.documents_processed:
            return "Please upload and process documents first.", []
        
        trace_id = str(uuid.uuid4())
        
        try:
            # Step 1: Retrieval
            await self.send_mcp_message(
                "RetrievalAgent", 
                "RETRIEVAL_REQUEST", 
                {"query": query}, 
                trace_id
            )
            
            context_chunks = await self.retrieval_agent.retrieve_relevant_chunks(query, k=5, trace_id=trace_id)
            
            # Step 2: LLM Response
            await self.send_mcp_message(
                "LLMResponseAgent", 
                "LLM_GENERATION_REQUEST", 
                {"query": query, "context_chunks": len(context_chunks)}, 
                trace_id
            )
            
            response = await self.llm_agent.generate_response(query, context_chunks, trace_id)
            
            return response, context_chunks
            
        except Exception as e:
            logger.error(f"Error in query processing: {e}")
            return f"Error processing query: {str(e)}", []

# Global coordinator instance
coordinator = None

def initialize_app(hf_token):
    """Initialize the application with HuggingFace token"""
    global coordinator
    coordinator = CoordinatorAgent(hf_token)
    return "βœ… Application initialized successfully!"

async def process_files(files):
    """Process uploaded files"""
    if not coordinator:
        return "❌ Please set your HuggingFace token first!"
    
    if not files:
        return "❌ Please upload at least one file."
    
    # Save uploaded files to temporary directory
    file_paths = []
    for file in files:
        temp_path = os.path.join(tempfile.gettempdir(), file.name)
        with open(temp_path, 'wb') as f:
            f.write(file.read())
        file_paths.append(temp_path)
    
    result = await coordinator.process_documents(file_paths)
    
    # Cleanup temporary files
    for path in file_paths:
        try:
            os.remove(path)
        except:
            pass
    
    return result

async def answer_question(query, history):
    """Answer user question"""
    if not coordinator:
        return "❌ Please set your HuggingFace token first!"
    
    if not query.strip():
        return "❌ Please enter a question."
    
    response, context_chunks = await coordinator.answer_query(query)
    
    # Format response with sources
    if context_chunks:
        sources = "\n\n**Sources:**\n"
        for i, chunk in enumerate(context_chunks[:3], 1):  # Show top 3 sources
            sources += f"{i}. {chunk['source']} (Chunk {chunk['chunk_id']})\n"
        response += sources
    
    return response

# Custom CSS
custom_css = """
/* Main container styling */
.gradio-container {
    max-width: 1200px !important;
    margin: 0 auto !important;
    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
}

/* Header styling */
.header-container {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    padding: 2rem !important;
    border-radius: 15px !important;
    margin-bottom: 2rem !important;
    text-align: center !important;
    box-shadow: 0 8px 32px rgba(0,0,0,0.1) !important;
}

.header-title {
    font-size: 2.5rem !important;
    font-weight: 700 !important;
    margin-bottom: 0.5rem !important;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.3) !important;
}

.header-subtitle {
    font-size: 1.2rem !important;
    opacity: 0.9 !important;
    font-weight: 300 !important;
}

/* Tab styling */
.tab-nav {
    background: white !important;
    border-radius: 12px !important;
    box-shadow: 0 4px 20px rgba(0,0,0,0.08) !important;
    padding: 0.5rem !important;
    margin-bottom: 1rem !important;
}

/* Card styling */
.setup-card, .upload-card, .chat-card {
    background: white !important;
    border-radius: 15px !important;
    padding: 2rem !important;
    box-shadow: 0 4px 20px rgba(0,0,0,0.08) !important;
    border: 1px solid #e1e5e9 !important;
    margin-bottom: 1.5rem !important;
}

/* Button styling */
.primary-button {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    border: none !important;
    border-radius: 10px !important;
    padding: 0.75rem 2rem !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3) !important;
}

.primary-button:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
}

/* Chat interface styling */
.chat-container {
    max-height: 600px !important;
    overflow-y: auto !important;
    background: #f8f9fa !important;
    border-radius: 15px !important;
    padding: 1rem !important;
    border: 1px solid #e1e5e9 !important;
}

/* Input styling */
.input-container input, .input-container textarea {
    border: 2px solid #e1e5e9 !important;
    border-radius: 10px !important;
    padding: 0.75rem 1rem !important;
    font-size: 1rem !important;
    transition: border-color 0.3s ease !important;
}

.input-container input:focus, .input-container textarea:focus {
    border-color: #667eea !important;
    box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
    outline: none !important;
}

/* Status indicators */
.status-success {
    color: #28a745 !important;
    background: #d4edda !important;
    padding: 0.75rem 1rem !important;
    border-radius: 8px !important;
    border: 1px solid #c3e6cb !important;
    margin: 1rem 0 !important;
}

.status-error {
    color: #dc3545 !important;
    background: #f8d7da !important;
    padding: 0.75rem 1rem !important;
    border-radius: 8px !important;
    border: 1px solid #f5c6cb !important;
    margin: 1rem 0 !important;
}

/* File upload styling */
.file-upload {
    border: 2px dashed #667eea !important;
    border-radius: 15px !important;
    padding: 2rem !important;
    text-align: center !important;
    background: #f8f9ff !important;
    transition: all 0.3s ease !important;
}

.file-upload:hover {
    border-color: #764ba2 !important;
    background: #f0f4ff !important;
}

/* Architecture diagram container */
.architecture-container {
    background: white !important;
    border-radius: 15px !important;
    padding: 2rem !important;
    margin: 1rem 0 !important;
    box-shadow: 0 4px 20px rgba(0,0,0,0.08) !important;
    text-align: center !important;
}

/* Responsive design */
@media (max-width: 768px) {
    .header-title {
        font-size: 2rem !important;
    }
    
    .setup-card, .upload-card, .chat-card {
        padding: 1.5rem !important;
    }
}

/* Animation for loading states */
@keyframes pulse {
    0% { opacity: 1; }
    50% { opacity: 0.5; }
    100% { opacity: 1; }
}

.loading {
    animation: pulse 1.5s ease-in-out infinite !important;
}
"""

# Create Gradio Interface
def create_interface():
    with gr.Blocks(css=custom_css, title="πŸ€– Agentic RAG Chatbot") as demo:
        gr.HTML("""
        <div class="header-container">
            <h1 class="header-title">πŸ€– Agentic RAG Chatbot</h1>
            <p class="header-subtitle">Multi-Format Document QA using Model Context Protocol (MCP)</p>
        </div>
        """)
        
        with gr.Tabs() as tabs:
            # Setup Tab
            with gr.TabItem("βš™οΈ Setup", elem_classes=["tab-nav"]):
                gr.HTML("""
                <div class="setup-card">
                    <h3>πŸ”‘ Configuration</h3>
                    <p>Enter your HuggingFace token to get started. This token is used to access the Llama-3.1-8B-Instruct model.</p>
                </div>
                """)
                
                with gr.Row():
                    hf_token_input = gr.Textbox(
                        label="HuggingFace Token",
                        placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxx",
                        type="password",
                        elem_classes=["input-container"]
                    )
                
                with gr.Row():
                    init_button = gr.Button(
                        "Initialize Application", 
                        variant="primary",
                        elem_classes=["primary-button"]
                    )
                
                init_status = gr.Textbox(
                    label="Status",
                    interactive=False,
                    elem_classes=["input-container"]
                )
            
            # Upload Tab
            with gr.TabItem("πŸ“ Upload Documents", elem_classes=["tab-nav"]):
                gr.HTML("""
                <div class="upload-card">
                    <h3>πŸ“„ Document Upload</h3>
                    <p>Upload your documents in any supported format: PDF, DOCX, PPTX, CSV, TXT, or Markdown.</p>
                </div>
                """)
                
                file_upload = gr.File(
                    label="Choose Files",
                    file_count="multiple",
                    file_types=[".pdf", ".docx", ".pptx", ".csv", ".txt", ".md"],
                    elem_classes=["file-upload"]
                )
                
                upload_button = gr.Button(
                    "Process Documents", 
                    variant="primary",
                    elem_classes=["primary-button"]
                )
                
                upload_status = gr.Textbox(
                    label="Processing Status",
                    interactive=False,
                    elem_classes=["input-container"]
                )
            
            # Chat Tab
            with gr.TabItem("πŸ’¬ Chat", elem_classes=["tab-nav"]):
                gr.HTML("""
                <div class="chat-card">
                    <h3>πŸ—¨οΈ Ask Questions</h3>
                    <p>Ask questions about your uploaded documents. The AI will provide answers based on the document content.</p>
                </div>
                """)
                
                chatbot = gr.Chatbot(
                    label="Conversation",
                    height=400,
                    elem_classes=["chat-container"]
                )
                
                with gr.Row():
                    query_input = gr.Textbox(
                        label="Your Question",
                        placeholder="What are the key findings in the document?",
                        elem_classes=["input-container"]
                    )
                    ask_button = gr.Button(
                        "Ask", 
                        variant="primary",
                        elem_classes=["primary-button"]
                    )
                
                gr.Examples(
                    examples=[
                        "What are the main topics covered in the documents?",
                        "Can you summarize the key findings?",
                        "What are the important metrics mentioned?",
                        "What recommendations are provided?",
                    ],
                    inputs=query_input,
                    label="Example Questions"
                )
            
            # Architecture Tab
            with gr.TabItem("πŸ—οΈ Architecture", elem_classes=["tab-nav"]):
                gr.HTML("""
                <div class="architecture-container">
                    <h3>πŸ›οΈ System Architecture</h3>
                    <p>This system uses an agentic architecture with Model Context Protocol (MCP) for inter-agent communication.</p>
                </div>
                """)
                
                gr.Markdown("""
                ## πŸ”„ Agent Flow Diagram
                
                ```
                User Upload β†’ CoordinatorAgent β†’ IngestionAgent β†’ RetrievalAgent β†’ LLMResponseAgent
                     ↓              ↓                ↓               ↓              ↓
                 Documents    MCP Messages    Text Chunks    Vector Store    Final Response
                ```
                
                ## πŸ€– Agent Descriptions
                
                - **CoordinatorAgent**: Orchestrates the entire workflow and manages MCP communication
                - **IngestionAgent**: Parses and preprocesses documents (PDF, DOCX, PPTX, CSV, TXT, MD)
                - **RetrievalAgent**: Handles embeddings and semantic retrieval using FAISS
                - **LLMResponseAgent**: Generates final responses using Llama-3.1-8B-Instruct
                
                ## πŸ”— Tech Stack
                
                - **Frontend**: Gradio with custom CSS
                - **LLM**: Meta Llama-3.1-8B-Instruct (via HuggingFace Inference)
                - **Embeddings**: sentence-transformers/all-MiniLM-L6-v2
                - **Vector Store**: FAISS
                - **Document Processing**: PyPDF2, python-docx, python-pptx, pandas
                - **Framework**: LangChain for document handling
                
                ## πŸ“¨ MCP Message Example
                
                ```json
                {
                  "sender": "RetrievalAgent",
                  "receiver": "LLMResponseAgent", 
                  "type": "RETRIEVAL_RESULT",
                  "trace_id": "rag-457",
                  "payload": {
                    "retrieved_context": ["Revenue increased by 25%", "Q1 KPIs exceeded targets"],
                    "query": "What were the Q1 KPIs?"
                  },
                  "timestamp": "2025-07-21T10:30:00Z"
                }
                ```
                """)
        
        # Event handlers
        init_button.click(
            fn=initialize_app,
            inputs=[hf_token_input],
            outputs=[init_status]
        )
        
        upload_button.click(
            fn=process_files,
            inputs=[file_upload],
            outputs=[upload_status]
        )
        
        ask_button.click(
            fn=answer_question,
            inputs=[query_input, chatbot],
            outputs=[chatbot]
        )
        
        query_input.submit(
            fn=answer_question,
            inputs=[query_input, chatbot],
            outputs=[chatbot]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_api=False
    )