from fastapi import FastAPI from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM import torch app = FastAPI() class PromptRequest(BaseModel): prompt: str # Load small LLaMA 3.2B model (or any other compatible) MODEL_NAME = "TheBloke/Llama-3-OpenOrca-2.2B-GGUF" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) @app.get("/") def root(): return {"message": "LLaMA 3.2B API for QuizForge is live!"} @app.post("/generate") def generate_text(data: PromptRequest): inputs = tokenizer(data.prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=1024) output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"response": output_text}