initialize project structure with Dockerfile, app.py, and requirements.txt
Browse files- Dockerfile +13 -0
- app.py +25 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY requirements.txt .
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
EXPOSE 7860
|
12 |
+
|
13 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
class PromptRequest(BaseModel):
|
9 |
+
prompt: str
|
10 |
+
|
11 |
+
# Load small LLaMA 3.2B model (or any other compatible)
|
12 |
+
MODEL_NAME = "TheBloke/Llama-3-OpenOrca-2.2B-GGUF"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
15 |
+
|
16 |
+
@app.get("/")
|
17 |
+
def root():
|
18 |
+
return {"message": "LLaMA 3.2B API for QuizForge is live!"}
|
19 |
+
|
20 |
+
@app.post("/generate")
|
21 |
+
def generate_text(data: PromptRequest):
|
22 |
+
inputs = tokenizer(data.prompt, return_tensors="pt")
|
23 |
+
outputs = model.generate(**inputs, max_new_tokens=1024)
|
24 |
+
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
25 |
+
return {"response": output_text}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
transformers
|
4 |
+
torch
|