Spaces:
Runtime error
Runtime error
""" | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM | |
import os | |
access_token = os.environ['HF_TOKEN'] | |
config = PeftConfig.from_pretrained("HiTZ/Mistral-7B-MedExpQA-EN") | |
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", token=access_token) | |
model = PeftModel.from_pretrained(model, "HiTZ/Mistral-7B-MedExpQA-EN", token=access_token) | |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", token=access_token) | |
input_text = "Write me a poem about Machine Learning." | |
input_ids = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(**input_ids) | |
print(tokenizer.decode(outputs[0])) | |
""" | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
import os | |
access_token = os.environ['HF_TOKEN'] | |
import requests | |
API_URL = "https://api-inference.huggingface.co/models/HiTZ/Mistral-7B-MedExpQA-EN" | |
headers = {"Authorization": "Bearer "+access_token} | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
output = query({ | |
"inputs": "Can you please let us know more details about your ", | |
}) | |
""" | |
client = InferenceClient("mistralai/Mistral-7B-v0.1",access_token) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
additional_inputs=additional_inputs, | |
title="Mistral 7B fine-tuned on MedExpQA with max RAG 32" | |
).launch(show_api=False) | |
""" |