|
|
|
|
|
import math |
|
from collections import OrderedDict |
|
from functools import partial |
|
import warnings |
|
from contextlib import nullcontext |
|
import torch |
|
from einops import rearrange, repeat |
|
from scepter.modules.model.base_model import BaseModel |
|
from scepter.modules.model.registry import BACKBONES |
|
from scepter.modules.utils.config import dict_to_yaml |
|
from scepter.modules.utils.distribute import we |
|
from scepter.modules.utils.file_system import FS |
|
from torch import Tensor, nn |
|
from torch.nn.utils.rnn import pad_sequence |
|
from torch.utils.checkpoint import checkpoint_sequential |
|
import torch.nn.functional as F |
|
import torch.utils.dlpack |
|
import transformers |
|
from scepter.modules.model.embedder.base_embedder import BaseEmbedder |
|
from scepter.modules.model.registry import EMBEDDERS |
|
from scepter.modules.model.tokenizer.tokenizer_component import ( |
|
basic_clean, canonicalize, heavy_clean, whitespace_clean) |
|
try: |
|
from transformers import AutoTokenizer, T5EncoderModel |
|
except Exception as e: |
|
warnings.warn( |
|
f'Import transformers error, please deal with this problem: {e}') |
|
|
|
from .layers import (DoubleStreamBlock, EmbedND, LastLayer, |
|
MLPEmbedder, SingleStreamBlock, |
|
timestep_embedding) |
|
|
|
|
|
|
|
@EMBEDDERS.register_class() |
|
class ACETextEmbedder(BaseEmbedder): |
|
""" |
|
Uses the OpenCLIP transformer encoder for text |
|
""" |
|
""" |
|
Uses the OpenCLIP transformer encoder for text |
|
""" |
|
para_dict = { |
|
'PRETRAINED_MODEL': { |
|
'value': |
|
'google/umt5-small', |
|
'description': |
|
'Pretrained Model for umt5, modelcard path or local path.' |
|
}, |
|
'TOKENIZER_PATH': { |
|
'value': 'google/umt5-small', |
|
'description': |
|
'Tokenizer Path for umt5, modelcard path or local path.' |
|
}, |
|
'FREEZE': { |
|
'value': True, |
|
'description': '' |
|
}, |
|
'USE_GRAD': { |
|
'value': False, |
|
'description': 'Compute grad or not.' |
|
}, |
|
'CLEAN': { |
|
'value': |
|
'whitespace', |
|
'description': |
|
'Set the clean strtegy for tokenizer, used when TOKENIZER_PATH is not None.' |
|
}, |
|
'LAYER': { |
|
'value': 'last', |
|
'description': '' |
|
}, |
|
'LEGACY': { |
|
'value': |
|
True, |
|
'description': |
|
'Whether use legacy returnd feature or not ,default True.' |
|
} |
|
} |
|
|
|
def __init__(self, cfg, logger=None): |
|
super().__init__(cfg, logger=logger) |
|
pretrained_path = cfg.get('PRETRAINED_MODEL', None) |
|
self.t5_dtype = cfg.get('T5_DTYPE', 'float32') |
|
assert pretrained_path |
|
with FS.get_dir_to_local_dir(pretrained_path, |
|
wait_finish=True) as local_path: |
|
self.model = T5EncoderModel.from_pretrained( |
|
local_path, |
|
torch_dtype=getattr( |
|
torch, |
|
'float' if self.t5_dtype == 'float32' else self.t5_dtype)) |
|
tokenizer_path = cfg.get('TOKENIZER_PATH', None) |
|
self.length = cfg.get('LENGTH', 77) |
|
|
|
self.use_grad = cfg.get('USE_GRAD', False) |
|
self.clean = cfg.get('CLEAN', 'whitespace') |
|
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None) |
|
if tokenizer_path: |
|
self.tokenize_kargs = {'return_tensors': 'pt'} |
|
with FS.get_dir_to_local_dir(tokenizer_path, |
|
wait_finish=True) as local_path: |
|
if self.added_identifier is not None and isinstance( |
|
self.added_identifier, list): |
|
self.tokenizer = AutoTokenizer.from_pretrained(local_path) |
|
else: |
|
self.tokenizer = AutoTokenizer.from_pretrained(local_path) |
|
if self.length is not None: |
|
self.tokenize_kargs.update({ |
|
'padding': 'max_length', |
|
'truncation': True, |
|
'max_length': self.length |
|
}) |
|
self.eos_token = self.tokenizer( |
|
self.tokenizer.eos_token)['input_ids'][0] |
|
else: |
|
self.tokenizer = None |
|
self.tokenize_kargs = {} |
|
|
|
self.use_grad = cfg.get('USE_GRAD', False) |
|
self.clean = cfg.get('CLEAN', 'whitespace') |
|
|
|
def freeze(self): |
|
self.model = self.model.eval() |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
def forward(self, tokens, return_mask=False, use_mask=True): |
|
|
|
embedding_context = nullcontext if self.use_grad else torch.no_grad |
|
with embedding_context(): |
|
if use_mask: |
|
x = self.model(tokens.input_ids.to(we.device_id), |
|
tokens.attention_mask.to(we.device_id)) |
|
else: |
|
x = self.model(tokens.input_ids.to(we.device_id)) |
|
x = x.last_hidden_state |
|
|
|
if return_mask: |
|
return x.detach() + 0.0, tokens.attention_mask.to(we.device_id) |
|
else: |
|
return x.detach() + 0.0, None |
|
|
|
def _clean(self, text): |
|
if self.clean == 'whitespace': |
|
text = whitespace_clean(basic_clean(text)) |
|
elif self.clean == 'lower': |
|
text = whitespace_clean(basic_clean(text)).lower() |
|
elif self.clean == 'canonicalize': |
|
text = canonicalize(basic_clean(text)) |
|
elif self.clean == 'heavy': |
|
text = heavy_clean(basic_clean(text)) |
|
return text |
|
|
|
def encode(self, text, return_mask=False, use_mask=True): |
|
if isinstance(text, str): |
|
text = [text] |
|
if self.clean: |
|
text = [self._clean(u) for u in text] |
|
assert self.tokenizer is not None |
|
cont, mask = [], [] |
|
with torch.autocast(device_type='cuda', |
|
enabled=self.t5_dtype in ('float16', 'bfloat16'), |
|
dtype=getattr(torch, self.t5_dtype)): |
|
for tt in text: |
|
tokens = self.tokenizer([tt], **self.tokenize_kargs) |
|
one_cont, one_mask = self(tokens, |
|
return_mask=return_mask, |
|
use_mask=use_mask) |
|
cont.append(one_cont) |
|
mask.append(one_mask) |
|
if return_mask: |
|
return torch.cat(cont, dim=0), torch.cat(mask, dim=0) |
|
else: |
|
return torch.cat(cont, dim=0) |
|
|
|
def encode_list(self, text_list, return_mask=True): |
|
cont_list = [] |
|
mask_list = [] |
|
for pp in text_list: |
|
cont, cont_mask = self.encode(pp, return_mask=return_mask) |
|
cont_list.append(cont) |
|
mask_list.append(cont_mask) |
|
if return_mask: |
|
return cont_list, mask_list |
|
else: |
|
return cont_list |
|
|
|
@staticmethod |
|
def get_config_template(): |
|
return dict_to_yaml('MODELS', |
|
__class__.__name__, |
|
ACETextEmbedder.para_dict, |
|
set_name=True) |
|
|
|
@EMBEDDERS.register_class() |
|
class ACEHFEmbedder(BaseEmbedder): |
|
para_dict = { |
|
"HF_MODEL_CLS": { |
|
"value": None, |
|
"description": "huggingface cls in transfomer" |
|
}, |
|
"MODEL_PATH": { |
|
"value": None, |
|
"description": "model folder path" |
|
}, |
|
"HF_TOKENIZER_CLS": { |
|
"value": None, |
|
"description": "huggingface cls in transfomer" |
|
}, |
|
|
|
"TOKENIZER_PATH": { |
|
"value": None, |
|
"description": "tokenizer folder path" |
|
}, |
|
"MAX_LENGTH": { |
|
"value": 77, |
|
"description": "max length of input" |
|
}, |
|
"OUTPUT_KEY": { |
|
"value": "last_hidden_state", |
|
"description": "output key" |
|
}, |
|
"D_TYPE": { |
|
"value": "float", |
|
"description": "dtype" |
|
}, |
|
"BATCH_INFER": { |
|
"value": False, |
|
"description": "batch infer" |
|
} |
|
} |
|
para_dict.update(BaseEmbedder.para_dict) |
|
def __init__(self, cfg, logger=None): |
|
super().__init__(cfg, logger=logger) |
|
hf_model_cls = cfg.get('HF_MODEL_CLS', None) |
|
model_path = cfg.get("MODEL_PATH", None) |
|
hf_tokenizer_cls = cfg.get('HF_TOKENIZER_CLS', None) |
|
tokenizer_path = cfg.get('TOKENIZER_PATH', None) |
|
self.max_length = cfg.get('MAX_LENGTH', 77) |
|
self.output_key = cfg.get("OUTPUT_KEY", "last_hidden_state") |
|
self.d_type = cfg.get("D_TYPE", "float") |
|
self.clean = cfg.get("CLEAN", "whitespace") |
|
self.batch_infer = cfg.get("BATCH_INFER", False) |
|
self.added_identifier = cfg.get('ADDED_IDENTIFIER', None) |
|
torch_dtype = getattr(torch, self.d_type) |
|
|
|
assert hf_model_cls is not None and hf_tokenizer_cls is not None |
|
assert model_path is not None and tokenizer_path is not None |
|
with FS.get_dir_to_local_dir(tokenizer_path, wait_finish=True) as local_path: |
|
self.tokenizer = getattr(transformers, hf_tokenizer_cls).from_pretrained(local_path, |
|
max_length = self.max_length, |
|
torch_dtype = torch_dtype, |
|
additional_special_tokens=self.added_identifier) |
|
|
|
with FS.get_dir_to_local_dir(model_path, wait_finish=True) as local_path: |
|
self.hf_module = getattr(transformers, hf_model_cls).from_pretrained(local_path, torch_dtype = torch_dtype) |
|
|
|
|
|
self.hf_module = self.hf_module.eval().requires_grad_(False) |
|
|
|
def forward(self, text: list[str], return_mask = False): |
|
batch_encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
max_length=self.max_length, |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
padding="max_length", |
|
return_tensors="pt", |
|
) |
|
|
|
outputs = self.hf_module( |
|
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), |
|
attention_mask=None, |
|
output_hidden_states=False, |
|
) |
|
if return_mask: |
|
return outputs[self.output_key], batch_encoding['attention_mask'].to(self.hf_module.device) |
|
else: |
|
return outputs[self.output_key], None |
|
|
|
def encode(self, text, return_mask = False): |
|
if isinstance(text, str): |
|
text = [text] |
|
if self.clean: |
|
text = [self._clean(u) for u in text] |
|
if not self.batch_infer: |
|
cont, mask = [], [] |
|
for tt in text: |
|
one_cont, one_mask = self([tt], return_mask=return_mask) |
|
cont.append(one_cont) |
|
mask.append(one_mask) |
|
if return_mask: |
|
return torch.cat(cont, dim=0), torch.cat(mask, dim=0) |
|
else: |
|
return torch.cat(cont, dim=0) |
|
else: |
|
ret_data = self(text, return_mask = return_mask) |
|
if return_mask: |
|
return ret_data |
|
else: |
|
return ret_data[0] |
|
|
|
def encode_list(self, text_list, return_mask=True): |
|
cont_list = [] |
|
mask_list = [] |
|
for pp in text_list: |
|
cont = self.encode(pp, return_mask=return_mask) |
|
cont_list.append(cont[0]) if return_mask else cont_list.append(cont) |
|
mask_list.append(cont[1]) if return_mask else mask_list.append(None) |
|
if return_mask: |
|
return cont_list, mask_list |
|
else: |
|
return cont_list |
|
|
|
def encode_list_of_list(self, text_list, return_mask=True): |
|
cont_list = [] |
|
mask_list = [] |
|
for pp in text_list: |
|
cont = self.encode_list(pp, return_mask=return_mask) |
|
cont_list.append(cont[0]) if return_mask else cont_list.append(cont) |
|
mask_list.append(cont[1]) if return_mask else mask_list.append(None) |
|
if return_mask: |
|
return cont_list, mask_list |
|
else: |
|
return cont_list |
|
|
|
def _clean(self, text): |
|
if self.clean == 'whitespace': |
|
text = whitespace_clean(basic_clean(text)) |
|
elif self.clean == 'lower': |
|
text = whitespace_clean(basic_clean(text)).lower() |
|
elif self.clean == 'canonicalize': |
|
text = canonicalize(basic_clean(text)) |
|
return text |
|
@staticmethod |
|
def get_config_template(): |
|
return dict_to_yaml('EMBEDDER', |
|
__class__.__name__, |
|
ACEHFEmbedder.para_dict, |
|
set_name=True) |
|
|
|
@EMBEDDERS.register_class() |
|
class T5ACEPlusClipFluxEmbedder(BaseEmbedder): |
|
""" |
|
Uses the OpenCLIP transformer encoder for text |
|
""" |
|
para_dict = { |
|
'T5_MODEL': {}, |
|
'CLIP_MODEL': {} |
|
} |
|
|
|
def __init__(self, cfg, logger=None): |
|
super().__init__(cfg, logger=logger) |
|
self.t5_model = EMBEDDERS.build(cfg.T5_MODEL, logger=logger) |
|
self.clip_model = EMBEDDERS.build(cfg.CLIP_MODEL, logger=logger) |
|
|
|
def encode(self, text, return_mask = False): |
|
t5_embeds = self.t5_model.encode(text, return_mask = return_mask) |
|
clip_embeds = self.clip_model.encode(text, return_mask = return_mask) |
|
|
|
return { |
|
'context': t5_embeds, |
|
'y': clip_embeds, |
|
} |
|
|
|
def encode_list(self, text, return_mask = False): |
|
t5_embeds = self.t5_model.encode_list(text, return_mask = return_mask) |
|
clip_embeds = self.clip_model.encode_list(text, return_mask = return_mask) |
|
|
|
return { |
|
'context': t5_embeds, |
|
'y': clip_embeds, |
|
} |
|
|
|
def encode_list_of_list(self, text, return_mask = False): |
|
t5_embeds = self.t5_model.encode_list_of_list(text, return_mask = return_mask) |
|
clip_embeds = self.clip_model.encode_list_of_list(text, return_mask = return_mask) |
|
|
|
return { |
|
'context': t5_embeds, |
|
'y': clip_embeds, |
|
} |
|
|
|
|
|
@staticmethod |
|
def get_config_template(): |
|
return dict_to_yaml('EMBEDDER', |
|
__class__.__name__, |
|
T5ACEPlusClipFluxEmbedder.para_dict, |
|
set_name=True) |
|
|
|
@BACKBONES.register_class() |
|
class Flux(BaseModel): |
|
""" |
|
Transformer backbone Diffusion model with RoPE. |
|
""" |
|
para_dict = { |
|
"IN_CHANNELS": { |
|
"value": 64, |
|
"description": "model's input channels." |
|
}, |
|
"OUT_CHANNELS": { |
|
"value": 64, |
|
"description": "model's output channels." |
|
}, |
|
"HIDDEN_SIZE": { |
|
"value": 1024, |
|
"description": "model's hidden size." |
|
}, |
|
"NUM_HEADS": { |
|
"value": 16, |
|
"description": "number of heads in the transformer." |
|
}, |
|
"AXES_DIM": { |
|
"value": [16, 56, 56], |
|
"description": "dimensions of the axes of the positional encoding." |
|
}, |
|
"THETA": { |
|
"value": 10_000, |
|
"description": "theta for positional encoding." |
|
}, |
|
"VEC_IN_DIM": { |
|
"value": 768, |
|
"description": "dimension of the vector input." |
|
}, |
|
"GUIDANCE_EMBED": { |
|
"value": False, |
|
"description": "whether to use guidance embedding." |
|
}, |
|
"CONTEXT_IN_DIM": { |
|
"value": 4096, |
|
"description": "dimension of the context input." |
|
}, |
|
"MLP_RATIO": { |
|
"value": 4.0, |
|
"description": "ratio of mlp hidden size to hidden size." |
|
}, |
|
"QKV_BIAS": { |
|
"value": True, |
|
"description": "whether to use bias in qkv projection." |
|
}, |
|
"DEPTH": { |
|
"value": 19, |
|
"description": "number of transformer blocks." |
|
}, |
|
"DEPTH_SINGLE_BLOCKS": { |
|
"value": 38, |
|
"description": "number of transformer blocks in the single stream block." |
|
}, |
|
"USE_GRAD_CHECKPOINT": { |
|
"value": False, |
|
"description": "whether to use gradient checkpointing." |
|
}, |
|
"ATTN_BACKEND": { |
|
"value": "pytorch", |
|
"description": "backend for the transformer blocks, 'pytorch' or 'flash_attn'." |
|
} |
|
} |
|
def __init__( |
|
self, |
|
cfg, |
|
logger = None |
|
): |
|
super().__init__(cfg, logger=logger) |
|
self.in_channels = cfg.IN_CHANNELS |
|
self.out_channels = cfg.get("OUT_CHANNELS", self.in_channels) |
|
hidden_size = cfg.get("HIDDEN_SIZE", 1024) |
|
num_heads = cfg.get("NUM_HEADS", 16) |
|
axes_dim = cfg.AXES_DIM |
|
theta = cfg.THETA |
|
vec_in_dim = cfg.VEC_IN_DIM |
|
self.guidance_embed = cfg.GUIDANCE_EMBED |
|
context_in_dim = cfg.CONTEXT_IN_DIM |
|
mlp_ratio = cfg.MLP_RATIO |
|
qkv_bias = cfg.QKV_BIAS |
|
depth = cfg.DEPTH |
|
depth_single_blocks = cfg.DEPTH_SINGLE_BLOCKS |
|
self.use_grad_checkpoint = cfg.get("USE_GRAD_CHECKPOINT", False) |
|
self.attn_backend = cfg.get("ATTN_BACKEND", "pytorch") |
|
self.lora_model = cfg.get("DIFFUSERS_LORA_MODEL", None) |
|
self.swift_lora_model = cfg.get("SWIFT_LORA_MODEL", None) |
|
self.pretrain_adapter = cfg.get("PRETRAIN_ADAPTER", None) |
|
|
|
if hidden_size % num_heads != 0: |
|
raise ValueError( |
|
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" |
|
) |
|
pe_dim = hidden_size // num_heads |
|
if sum(axes_dim) != pe_dim: |
|
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}") |
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim= axes_dim) |
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
self.vector_in = MLPEmbedder(vec_in_dim, self.hidden_size) |
|
self.guidance_in = ( |
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if self.guidance_embed else nn.Identity() |
|
) |
|
self.txt_in = nn.Linear(context_in_dim, self.hidden_size) |
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
DoubleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
backend=self.attn_backend |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio, backend=self.attn_backend) |
|
for _ in range(depth_single_blocks) |
|
] |
|
) |
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) |
|
|
|
def prepare_input(self, x, context, y, x_shape=None): |
|
|
|
bs, c, h, w = x.shape |
|
x = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) |
|
x_id = torch.zeros(h // 2, w // 2, 3) |
|
x_id[..., 1] = x_id[..., 1] + torch.arange(h // 2)[:, None] |
|
x_id[..., 2] = x_id[..., 2] + torch.arange(w // 2)[None, :] |
|
x_ids = repeat(x_id, "h w c -> b (h w) c", b=bs) |
|
txt_ids = torch.zeros(bs, context.shape[1], 3) |
|
return x, x_ids.to(x), context.to(x), txt_ids.to(x), y.to(x), h, w |
|
|
|
def unpack(self, x: Tensor, height: int, width: int) -> Tensor: |
|
return rearrange( |
|
x, |
|
"b (h w) (c ph pw) -> b c (h ph) (w pw)", |
|
h=math.ceil(height/2), |
|
w=math.ceil(width/2), |
|
ph=2, |
|
pw=2, |
|
) |
|
|
|
def merge_diffuser_lora(self, ori_sd, lora_sd, scale = 1.0): |
|
key_map = { |
|
"single_blocks.{}.linear1.weight": {"key_list": [ |
|
["transformer.single_transformer_blocks.{}.attn.to_q.lora_A.weight", |
|
"transformer.single_transformer_blocks.{}.attn.to_q.lora_B.weight"], |
|
["transformer.single_transformer_blocks.{}.attn.to_k.lora_A.weight", |
|
"transformer.single_transformer_blocks.{}.attn.to_k.lora_B.weight"], |
|
["transformer.single_transformer_blocks.{}.attn.to_v.lora_A.weight", |
|
"transformer.single_transformer_blocks.{}.attn.to_v.lora_B.weight"], |
|
["transformer.single_transformer_blocks.{}.proj_mlp.lora_A.weight", |
|
"transformer.single_transformer_blocks.{}.proj_mlp.lora_B.weight"] |
|
], "num": 38}, |
|
"single_blocks.{}.modulation.lin.weight": {"key_list": [ |
|
["transformer.single_transformer_blocks.{}.norm.linear.lora_A.weight", |
|
"transformer.single_transformer_blocks.{}.norm.linear.lora_B.weight"], |
|
], "num": 38}, |
|
"single_blocks.{}.linear2.weight": {"key_list": [ |
|
["transformer.single_transformer_blocks.{}.proj_out.lora_A.weight", |
|
"transformer.single_transformer_blocks.{}.proj_out.lora_B.weight"], |
|
], "num": 38}, |
|
"double_blocks.{}.txt_attn.qkv.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.attn.add_q_proj.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.add_q_proj.lora_B.weight"], |
|
["transformer.transformer_blocks.{}.attn.add_k_proj.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.add_k_proj.lora_B.weight"], |
|
["transformer.transformer_blocks.{}.attn.add_v_proj.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.add_v_proj.lora_B.weight"], |
|
], "num": 19}, |
|
"double_blocks.{}.img_attn.qkv.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.attn.to_q.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.to_q.lora_B.weight"], |
|
["transformer.transformer_blocks.{}.attn.to_k.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.to_k.lora_B.weight"], |
|
["transformer.transformer_blocks.{}.attn.to_v.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.to_v.lora_B.weight"], |
|
], "num": 19}, |
|
"double_blocks.{}.img_attn.proj.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.attn.to_out.0.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.to_out.0.lora_B.weight"] |
|
], "num": 19}, |
|
"double_blocks.{}.txt_attn.proj.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.attn.to_add_out.lora_A.weight", |
|
"transformer.transformer_blocks.{}.attn.to_add_out.lora_B.weight"] |
|
], "num": 19}, |
|
"double_blocks.{}.img_mlp.0.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.ff.net.0.proj.lora_A.weight", |
|
"transformer.transformer_blocks.{}.ff.net.0.proj.lora_B.weight"] |
|
], "num": 19}, |
|
"double_blocks.{}.img_mlp.2.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.ff.net.2.lora_A.weight", |
|
"transformer.transformer_blocks.{}.ff.net.2.lora_B.weight"] |
|
], "num": 19}, |
|
"double_blocks.{}.txt_mlp.0.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_A.weight", |
|
"transformer.transformer_blocks.{}.ff_context.net.0.proj.lora_B.weight"] |
|
], "num": 19}, |
|
"double_blocks.{}.txt_mlp.2.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.ff_context.net.2.lora_A.weight", |
|
"transformer.transformer_blocks.{}.ff_context.net.2.lora_B.weight"] |
|
], "num": 19}, |
|
"double_blocks.{}.img_mod.lin.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.norm1.linear.lora_A.weight", |
|
"transformer.transformer_blocks.{}.norm1.linear.lora_B.weight"] |
|
], "num": 19}, |
|
"double_blocks.{}.txt_mod.lin.weight": {"key_list": [ |
|
["transformer.transformer_blocks.{}.norm1_context.linear.lora_A.weight", |
|
"transformer.transformer_blocks.{}.norm1_context.linear.lora_B.weight"] |
|
], "num": 19} |
|
} |
|
for k, v in key_map.items(): |
|
key_list = v["key_list"] |
|
block_num = v["num"] |
|
for block_id in range(block_num): |
|
current_weight_list = [] |
|
for k_list in key_list: |
|
current_weight = torch.matmul(lora_sd[k_list[0].format(block_id)].permute(1, 0), |
|
lora_sd[k_list[1].format(block_id)].permute(1, 0)).permute(1, 0) |
|
current_weight_list.append(current_weight) |
|
current_weight = torch.cat(current_weight_list, dim=0) |
|
ori_sd[k.format(block_id)] += scale*current_weight |
|
return ori_sd |
|
|
|
def merge_swift_lora(self, ori_sd, lora_sd, scale = 1.0): |
|
have_lora_keys = {} |
|
for k, v in lora_sd.items(): |
|
k = k[len("model."):] if k.startswith("model.") else k |
|
ori_key = k.split("lora")[0] + "weight" |
|
if ori_key not in ori_sd: |
|
raise f"{ori_key} should in the original statedict" |
|
if ori_key not in have_lora_keys: |
|
have_lora_keys[ori_key] = {} |
|
if "lora_A" in k: |
|
have_lora_keys[ori_key]["lora_A"] = v |
|
elif "lora_B" in k: |
|
have_lora_keys[ori_key]["lora_B"] = v |
|
else: |
|
raise NotImplementedError |
|
for key, v in have_lora_keys.items(): |
|
current_weight = torch.matmul(v["lora_A"].permute(1, 0), v["lora_B"].permute(1, 0)).permute(1, 0) |
|
ori_sd[key] += scale * current_weight |
|
return ori_sd |
|
|
|
|
|
def load_pretrained_model(self, pretrained_model): |
|
if next(self.parameters()).device.type == 'meta': |
|
map_location = we.device_id |
|
else: |
|
map_location = "cpu" |
|
if self.lora_model is not None: |
|
map_location = we.device_id |
|
if pretrained_model is not None: |
|
with FS.get_from(pretrained_model, wait_finish=True) as local_model: |
|
if local_model.endswith('safetensors'): |
|
from safetensors.torch import load_file as load_safetensors |
|
sd = load_safetensors(local_model, device=map_location) |
|
else: |
|
sd = torch.load(local_model, map_location=map_location) |
|
if "state_dict" in sd: |
|
sd = sd["state_dict"] |
|
if "model" in sd: |
|
sd = sd["model"]["model"] |
|
|
|
if self.lora_model is not None: |
|
with FS.get_from(self.lora_model, wait_finish=True) as local_model: |
|
if local_model.endswith('safetensors'): |
|
from safetensors.torch import load_file as load_safetensors |
|
lora_sd = load_safetensors(local_model, device=map_location) |
|
else: |
|
lora_sd = torch.load(local_model, map_location=map_location) |
|
sd = self.merge_diffuser_lora(sd, lora_sd) |
|
if self.swift_lora_model is not None: |
|
with FS.get_from(self.swift_lora_model, wait_finish=True) as local_model: |
|
if local_model.endswith('safetensors'): |
|
from safetensors.torch import load_file as load_safetensors |
|
lora_sd = load_safetensors(local_model, device=map_location) |
|
else: |
|
lora_sd = torch.load(local_model, map_location=map_location) |
|
sd = self.merge_swift_lora(sd, lora_sd) |
|
|
|
adapter_ckpt = {} |
|
if self.pretrain_adapter is not None: |
|
with FS.get_from(self.pretrain_adapter, wait_finish=True) as local_adapter: |
|
if local_model.endswith('safetensors'): |
|
from safetensors.torch import load_file as load_safetensors |
|
adapter_ckpt = load_safetensors(local_adapter, device=map_location) |
|
else: |
|
adapter_ckpt = torch.load(local_adapter, map_location=map_location) |
|
sd.update(adapter_ckpt) |
|
|
|
|
|
new_ckpt = OrderedDict() |
|
for k, v in sd.items(): |
|
if k in ("img_in.weight"): |
|
model_p = self.state_dict()[k] |
|
if v.shape != model_p.shape: |
|
model_p.zero_() |
|
model_p[:, :64].copy_(v[:, :64]) |
|
new_ckpt[k] = torch.nn.parameter.Parameter(model_p) |
|
else: |
|
new_ckpt[k] = v |
|
else: |
|
new_ckpt[k] = v |
|
|
|
|
|
missing, unexpected = self.load_state_dict(new_ckpt, strict=False, assign=True) |
|
self.logger.info( |
|
f'Restored from {pretrained_model} with {len(missing)} missing and {len(unexpected)} unexpected keys' |
|
) |
|
if len(missing) > 0: |
|
self.logger.info(f'Missing Keys:\n {missing}') |
|
if len(unexpected) > 0: |
|
self.logger.info(f'\nUnexpected Keys:\n {unexpected}') |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
t: Tensor, |
|
cond: dict = {}, |
|
guidance: Tensor | None = None, |
|
gc_seg: int = 0 |
|
) -> Tensor: |
|
x, x_ids, txt, txt_ids, y, h, w = self.prepare_input(x, cond["context"], cond["y"]) |
|
|
|
x = self.img_in(x) |
|
vec = self.time_in(timestep_embedding(t, 256)) |
|
if self.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
txt = self.txt_in(txt) |
|
ids = torch.cat((txt_ids, x_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
kwargs = dict( |
|
vec=vec, |
|
pe=pe, |
|
txt_length=txt.shape[1], |
|
) |
|
x = torch.cat((txt, x), 1) |
|
if self.use_grad_checkpoint and gc_seg >= 0: |
|
x = checkpoint_sequential( |
|
functions=[partial(block, **kwargs) for block in self.double_blocks], |
|
segments=gc_seg if gc_seg > 0 else len(self.double_blocks), |
|
input=x, |
|
use_reentrant=False |
|
) |
|
else: |
|
for block in self.double_blocks: |
|
x = block(x, **kwargs) |
|
|
|
kwargs = dict( |
|
vec=vec, |
|
pe=pe, |
|
) |
|
|
|
if self.use_grad_checkpoint and gc_seg >= 0: |
|
x = checkpoint_sequential( |
|
functions=[partial(block, **kwargs) for block in self.single_blocks], |
|
segments=gc_seg if gc_seg > 0 else len(self.single_blocks), |
|
input=x, |
|
use_reentrant=False |
|
) |
|
else: |
|
for block in self.single_blocks: |
|
x = block(x, **kwargs) |
|
x = x[:, txt.shape[1] :, ...] |
|
x = self.final_layer(x, vec) |
|
x = self.unpack(x, h, w) |
|
return x |
|
|
|
@staticmethod |
|
def get_config_template(): |
|
return dict_to_yaml('MODEL', |
|
__class__.__name__, |
|
Flux.para_dict, |
|
set_name=True) |
|
|
|
@BACKBONES.register_class() |
|
class FluxMR(Flux): |
|
def prepare_input(self, x, cond): |
|
if isinstance(cond['context'], list): |
|
context, y = torch.cat(cond["context"], dim=0).to(x), torch.cat(cond["y"], dim=0).to(x) |
|
else: |
|
context, y = cond['context'].to(x), cond['y'].to(x) |
|
batch_frames, batch_frames_ids = [], [] |
|
for ix, shape in zip(x, cond["x_shapes"]): |
|
|
|
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1]) |
|
c, h, w = ix.shape |
|
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2) |
|
ix_id = torch.zeros(h // 2, w // 2, 3) |
|
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None] |
|
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :] |
|
ix_id = rearrange(ix_id, "h w c -> (h w) c") |
|
batch_frames.append([ix]) |
|
batch_frames_ids.append([ix_id]) |
|
|
|
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], [] |
|
for frames, frame_ids in zip(batch_frames, batch_frames_ids): |
|
proj_frames = [] |
|
for idx, one_frame in enumerate(frames): |
|
one_frame = self.img_in(one_frame) |
|
proj_frames.append(one_frame) |
|
ix = torch.cat(proj_frames, dim=0) |
|
if_id = torch.cat(frame_ids, dim=0) |
|
x_list.append(ix) |
|
x_id_list.append(if_id) |
|
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool()) |
|
x_seq_length.append(ix.shape[0]) |
|
x = pad_sequence(tuple(x_list), batch_first=True) |
|
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) |
|
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True) |
|
|
|
txt = self.txt_in(context) |
|
txt_ids = torch.zeros(context.shape[0], context.shape[1], 3).to(x) |
|
mask_txt = torch.ones(context.shape[0], context.shape[1]).to(x.device, non_blocking=True).bool() |
|
|
|
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length |
|
|
|
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor: |
|
x_list = [] |
|
image_shapes = cond["x_shapes"] |
|
for u, shape, seq_length in zip(x, image_shapes, x_seq_length): |
|
height, width = shape |
|
h, w = math.ceil(height / 2), math.ceil(width / 2) |
|
u = rearrange( |
|
u[seq_length-h*w:seq_length, ...], |
|
"(h w) (c ph pw) -> (h ph w pw) c", |
|
h=h, |
|
w=w, |
|
ph=2, |
|
pw=2, |
|
) |
|
x_list.append(u) |
|
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1) |
|
return x |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
t: Tensor, |
|
cond: dict = {}, |
|
guidance: Tensor | None = None, |
|
gc_seg: int = 0, |
|
**kwargs |
|
) -> Tensor: |
|
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond) |
|
|
|
vec = self.time_in(timestep_embedding(t, 256)) |
|
if self.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
ids = torch.cat((txt_ids, x_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
mask_aside = torch.cat((mask_txt, mask_x), dim=1) |
|
mask = mask_aside[:, None, :] * mask_aside[:, :, None] |
|
|
|
kwargs = dict( |
|
vec=vec, |
|
pe=pe, |
|
mask=mask, |
|
txt_length = txt.shape[1], |
|
) |
|
x = torch.cat((txt, x), 1) |
|
if self.use_grad_checkpoint and gc_seg >= 0: |
|
x = checkpoint_sequential( |
|
functions=[partial(block, **kwargs) for block in self.double_blocks], |
|
segments=gc_seg if gc_seg > 0 else len(self.double_blocks), |
|
input=x, |
|
use_reentrant=False |
|
) |
|
else: |
|
for block in self.double_blocks: |
|
x = block(x, **kwargs) |
|
|
|
kwargs = dict( |
|
vec=vec, |
|
pe=pe, |
|
mask=mask, |
|
) |
|
|
|
if self.use_grad_checkpoint and gc_seg >= 0: |
|
x = checkpoint_sequential( |
|
functions=[partial(block, **kwargs) for block in self.single_blocks], |
|
segments=gc_seg if gc_seg > 0 else len(self.single_blocks), |
|
input=x, |
|
use_reentrant=False |
|
) |
|
else: |
|
for block in self.single_blocks: |
|
x = block(x, **kwargs) |
|
x = x[:, txt.shape[1]:, ...] |
|
x = self.final_layer(x, vec) |
|
x = self.unpack(x, cond, seq_length_list) |
|
return x |
|
|
|
@staticmethod |
|
def get_config_template(): |
|
return dict_to_yaml('MODEL', |
|
__class__.__name__, |
|
FluxEdit.para_dict, |
|
set_name=True) |
|
@BACKBONES.register_class() |
|
class FluxEdit(FluxMR): |
|
def prepare_input(self, x, cond, *args, **kwargs): |
|
context, y = cond["context"], cond["y"] |
|
batch_frames, batch_frames_ids, batch_shift = [], [], [] |
|
|
|
for ix, shape, is_align in zip(x, cond["x_shapes"], cond['align']): |
|
|
|
ix = ix[:, :shape[0] * shape[1]].view(-1, shape[0], shape[1]) |
|
c, h, w = ix.shape |
|
ix = rearrange(ix, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2) |
|
ix_id = torch.zeros(h // 2, w // 2, 3) |
|
ix_id[..., 1] = ix_id[..., 1] + torch.arange(h // 2)[:, None] |
|
ix_id[..., 2] = ix_id[..., 2] + torch.arange(w // 2)[None, :] |
|
batch_shift.append(h // 2) |
|
ix_id = rearrange(ix_id, "h w c -> (h w) c") |
|
batch_frames.append([ix]) |
|
batch_frames_ids.append([ix_id]) |
|
if 'edit_x' in cond: |
|
for i, edit in enumerate(cond['edit_x']): |
|
if edit is None: |
|
continue |
|
for ie in edit: |
|
ie = ie.squeeze(0) |
|
c, h, w = ie.shape |
|
ie = rearrange(ie, "c (h ph) (w pw) -> (h w) (c ph pw)", ph=2, pw=2) |
|
ie_id = torch.zeros(h // 2, w // 2, 3) |
|
ie_id[..., 1] = ie_id[..., 1] + torch.arange(batch_shift[i], h // 2 + batch_shift[i])[:, None] |
|
ie_id[..., 2] = ie_id[..., 2] + torch.arange(w // 2)[None, :] |
|
ie_id = rearrange(ie_id, "h w c -> (h w) c") |
|
batch_frames[i].append(ie) |
|
batch_frames_ids[i].append(ie_id) |
|
|
|
x_list, x_id_list, mask_x_list, x_seq_length = [], [], [], [] |
|
for frames, frame_ids in zip(batch_frames, batch_frames_ids): |
|
proj_frames = [] |
|
for idx, one_frame in enumerate(frames): |
|
one_frame = self.img_in(one_frame) |
|
proj_frames.append(one_frame) |
|
ix = torch.cat(proj_frames, dim=0) |
|
if_id = torch.cat(frame_ids, dim=0) |
|
x_list.append(ix) |
|
x_id_list.append(if_id) |
|
mask_x_list.append(torch.ones(ix.shape[0]).to(ix.device, non_blocking=True).bool()) |
|
x_seq_length.append(ix.shape[0]) |
|
x = pad_sequence(tuple(x_list), batch_first=True) |
|
x_ids = pad_sequence(tuple(x_id_list), batch_first=True).to(x) |
|
mask_x = pad_sequence(tuple(mask_x_list), batch_first=True) |
|
|
|
txt_list, mask_txt_list, y_list = [], [], [] |
|
for sample_id, (ctx, yy) in enumerate(zip(context, y)): |
|
ctx_batch = [] |
|
for frame_id, one_ctx in enumerate(ctx): |
|
one_ctx = self.txt_in(one_ctx.to(x)) |
|
ctx_batch.append(one_ctx) |
|
txt_list.append(torch.cat(ctx_batch, dim=0)) |
|
mask_txt_list.append(torch.ones(txt_list[-1].shape[0]).to(ctx.device, non_blocking=True).bool()) |
|
y_list.append(yy.mean(dim = 0, keepdim=True)) |
|
txt = pad_sequence(tuple(txt_list), batch_first=True) |
|
txt_ids = torch.zeros(txt.shape[0], txt.shape[1], 3).to(x) |
|
mask_txt = pad_sequence(tuple(mask_txt_list), batch_first=True) |
|
y = torch.cat(y_list, dim=0) |
|
return x, x_ids, txt, txt_ids, y, mask_x, mask_txt, x_seq_length |
|
|
|
def unpack(self, x: Tensor, cond: dict = None, x_seq_length: list = None) -> Tensor: |
|
x_list = [] |
|
image_shapes = cond["x_shapes"] |
|
for u, shape, seq_length in zip(x, image_shapes, x_seq_length): |
|
height, width = shape |
|
h, w = math.ceil(height / 2), math.ceil(width / 2) |
|
u = rearrange( |
|
u[:h*w, ...], |
|
"(h w) (c ph pw) -> (h ph w pw) c", |
|
h=h, |
|
w=w, |
|
ph=2, |
|
pw=2, |
|
) |
|
x_list.append(u) |
|
x = pad_sequence(tuple(x_list), batch_first=True).permute(0, 2, 1) |
|
return x |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
t: Tensor, |
|
cond: dict = {}, |
|
guidance: Tensor | None = None, |
|
gc_seg: int = 0, |
|
text_position_embeddings = None |
|
) -> Tensor: |
|
x, x_ids, txt, txt_ids, y, mask_x, mask_txt, seq_length_list = self.prepare_input(x, cond, text_position_embeddings) |
|
|
|
vec = self.time_in(timestep_embedding(t, 256)) |
|
if self.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
ids = torch.cat((txt_ids, x_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
mask_aside = torch.cat((mask_txt, mask_x), dim=1) |
|
mask = mask_aside[:, None, :] * mask_aside[:, :, None] |
|
|
|
kwargs = dict( |
|
vec=vec, |
|
pe=pe, |
|
mask=mask, |
|
txt_length = txt.shape[1], |
|
) |
|
x = torch.cat((txt, x), 1) |
|
|
|
if self.use_grad_checkpoint and gc_seg >= 0: |
|
x = checkpoint_sequential( |
|
functions=[partial(block, **kwargs) for block in self.double_blocks], |
|
segments=gc_seg if gc_seg > 0 else len(self.double_blocks), |
|
input=x, |
|
use_reentrant=False |
|
) |
|
else: |
|
for block in self.double_blocks: |
|
x = block(x, **kwargs) |
|
|
|
kwargs = dict( |
|
vec=vec, |
|
pe=pe, |
|
mask=mask, |
|
) |
|
|
|
if self.use_grad_checkpoint and gc_seg >= 0: |
|
x = checkpoint_sequential( |
|
functions=[partial(block, **kwargs) for block in self.single_blocks], |
|
segments=gc_seg if gc_seg > 0 else len(self.single_blocks), |
|
input=x, |
|
use_reentrant=False |
|
) |
|
else: |
|
for block in self.single_blocks: |
|
x = block(x, **kwargs) |
|
x = x[:, txt.shape[1]:, ...] |
|
x = self.final_layer(x, vec) |
|
x = self.unpack(x, cond, seq_length_list) |
|
return x |
|
@staticmethod |
|
def get_config_template(): |
|
return dict_to_yaml('MODEL', |
|
__class__.__name__, |
|
FluxEdit.para_dict, |
|
set_name=True) |