Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
from PIL import Image | |
import torchvision.transforms as transforms | |
from models.ProtoSAM import ProtoSAM, ALPNetWrapper, InputFactory, TYPE_ALPNET | |
from models.grid_proto_fewshot import FewShotSeg | |
from models.segment_anything.utils.transforms import ResizeLongestSide | |
# Set environment variables for model caching | |
os.environ['TORCH_HOME'] = "./pretrained_model" | |
# Function to load the model | |
def load_model(config): | |
# Initial segmentation model | |
alpnet = FewShotSeg( | |
config["input_size"][0], | |
config["reload_model_path"], | |
config["model"] | |
) | |
alpnet.cuda() | |
base_model = ALPNetWrapper(alpnet) | |
# ProtoSAM model | |
sam_checkpoint = "pretrained_model/sam_vit_h.pth" | |
model = ProtoSAM( | |
image_size=(1024, 1024), | |
coarse_segmentation_model=base_model, | |
use_bbox=config["use_bbox"], | |
use_points=config["use_points"], | |
use_mask=config["use_mask"], | |
debug=False, | |
num_points_for_sam=1, | |
use_cca=config["do_cca"], | |
point_mode=config["point_mode"], | |
use_sam_trans=True, | |
coarse_pred_only=config["coarse_pred_only"], | |
sam_pretrained_path=sam_checkpoint, | |
use_neg_points=config["use_neg_points"], | |
) | |
model = model.to(torch.device("cuda")) | |
model.eval() | |
return model | |
# Function to preprocess images | |
def preprocess_image(image, transform): | |
if isinstance(image, np.ndarray): | |
image_np = image | |
else: | |
# Convert PIL Image to numpy array | |
image_np = np.array(image) | |
# Convert to RGB if grayscale | |
if len(image_np.shape) == 2: | |
image_np = np.stack([image_np] * 3, axis=2) | |
elif image_np.shape[2] == 1: | |
image_np = np.concatenate([image_np] * 3, axis=2) | |
# Apply transforms | |
image_tensor = transform(image_np).unsqueeze(0) | |
return image_tensor | |
# Function to create overlay visualization | |
def create_overlay(query_image, prediction, colormap='YlOrRd'): | |
""" | |
Create an overlay of the prediction on the query image | |
""" | |
# Convert tensors to numpy arrays for visualization | |
if isinstance(query_image, torch.Tensor): | |
query_image = query_image.cpu().squeeze().numpy() | |
if isinstance(prediction, torch.Tensor): | |
prediction = prediction.cpu().squeeze().numpy() | |
# Normalize image for visualization | |
query_image = (query_image - query_image.min()) / (query_image.max() - query_image.min() + 1e-8) | |
# Ensure binary mask | |
prediction = (prediction > 0).astype(np.float32) | |
# Create mask overlay | |
mask_cmap = plt.cm.get_cmap(colormap) | |
pred_rgba = mask_cmap(prediction) | |
pred_rgba[..., 3] = prediction * 0.7 # Set alpha channel | |
# Create matplotlib figure for overlay | |
fig, ax = plt.subplots(figsize=(10, 10)) | |
# Handle grayscale vs RGB images | |
if len(query_image.shape) == 2: | |
ax.imshow(query_image, cmap='gray') | |
else: | |
if query_image.shape[0] == 3: # Channel-first format | |
query_image = np.transpose(query_image, (1, 2, 0)) | |
ax.imshow(query_image) | |
ax.imshow(pred_rgba) | |
ax.axis('off') | |
plt.tight_layout() | |
# Convert to PIL Image | |
fig.canvas.draw() | |
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
plt.close(fig) | |
return img | |
# Model configuration | |
config = { | |
"input_size": [224], | |
"reload_model_path": "path/to/your/model.pth", # Update with your model path | |
"model": {"encoder": "resnet50", "decoder": "pspnet"}, | |
"use_bbox": True, | |
"use_points": True, | |
"use_mask": True, | |
"do_cca": True, | |
"point_mode": "extreme", | |
"coarse_pred_only": False, | |
"use_neg_points": False, | |
"base_model": TYPE_ALPNET | |
} | |
# Function to run inference | |
def run_inference(query_image, support_image, support_mask, use_bbox, use_points, use_mask, use_cca, coarse_pred_only): | |
try: | |
# Update config based on user selections | |
config["use_bbox"] = use_bbox | |
config["use_points"] = use_points | |
config["use_mask"] = use_mask | |
config["do_cca"] = use_cca | |
config["coarse_pred_only"] = coarse_pred_only | |
# Check if CUDA is available | |
if not torch.cuda.is_available(): | |
return None, "CUDA is not available. This demo requires GPU support." | |
# Load the model | |
model = load_model(config) | |
# Preprocess images | |
sam_trans = ResizeLongestSide(1024) | |
# Transform for images | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((1024, 1024), antialias=True), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
# Process query image | |
query_img_tensor = preprocess_image(query_image, transform) | |
# Process support image | |
support_img_tensor = preprocess_image(support_image, transform) | |
# Process support mask (should be binary) | |
support_mask_np = np.array(support_mask) | |
support_mask_np = (support_mask_np > 127).astype(np.float32) # Binarize mask | |
support_mask_tensor = torch.from_numpy(support_mask_np).unsqueeze(0).unsqueeze(0) | |
support_mask_tensor = torch.nn.functional.interpolate( | |
support_mask_tensor, size=(1024, 1024), mode='nearest' | |
) | |
# Prepare model inputs | |
support_images = [support_img_tensor.cuda()] | |
support_masks = [support_mask_tensor.cuda()] | |
# Create model input | |
coarse_model_input = InputFactory.create_input( | |
input_type=config["base_model"], | |
query_image=query_img_tensor.cuda(), | |
support_images=support_images, | |
support_labels=support_masks, | |
isval=True, | |
val_wsize=3, | |
original_sz=query_img_tensor.shape[-2:], | |
img_sz=query_img_tensor.shape[-2:], | |
gts=None, | |
) | |
coarse_model_input.to(torch.device("cuda")) | |
# Run inference | |
with torch.no_grad(): | |
query_pred, scores = model( | |
query_img_tensor.cuda(), coarse_model_input, degrees_rotate=0 | |
) | |
# Create overlay visualization | |
result_image = create_overlay(query_img_tensor, query_pred) | |
confidence_score = np.mean(scores) | |
return result_image, f"Confidence Score: {confidence_score:.4f}" | |
except Exception as e: | |
return None, f"Error during inference: {str(e)}" | |
# Define the Gradio interface | |
def create_interface(): | |
with gr.Blocks(title="ProtoSAM Segmentation Demo") as demo: | |
gr.Markdown("# ProtoSAM Segmentation Demo") | |
gr.Markdown("Upload a query image, support image, and support mask to generate a segmentation prediction.") | |
with gr.Row(): | |
with gr.Column(): | |
query_image = gr.Image(label="Query Image", type="pil") | |
support_image = gr.Image(label="Support Image", type="pil") | |
support_mask = gr.Image(label="Support Mask", type="pil") | |
with gr.Column(): | |
result_image = gr.Image(label="Prediction Result") | |
result_text = gr.Textbox(label="Result Information") | |
with gr.Row(): | |
with gr.Column(): | |
use_bbox = gr.Checkbox(label="Use Bounding Box", value=True) | |
use_points = gr.Checkbox(label="Use Points", value=True) | |
use_mask = gr.Checkbox(label="Use Mask", value=True) | |
with gr.Column(): | |
use_cca = gr.Checkbox(label="Use CCA", value=True) | |
coarse_pred_only = gr.Checkbox(label="Coarse Prediction Only", value=False) | |
run_button = gr.Button("Run Inference") | |
run_button.click( | |
fn=run_inference, | |
inputs=[ | |
query_image, | |
support_image, | |
support_mask, | |
use_bbox, | |
use_points, | |
use_mask, | |
use_cca, | |
coarse_pred_only | |
], | |
outputs=[result_image, result_text] | |
) | |
return demo | |
# Create and launch the interface | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch(share=True) |